不可数超有限性与随机比率遍历定理

Nachi Avraham-Re'em, George Peterzil
{"title":"不可数超有限性与随机比率遍历定理","authors":"Nachi Avraham-Re'em, George Peterzil","doi":"arxiv-2409.02781","DOIUrl":null,"url":null,"abstract":"We show that the orbit equivalence relation of a free action of a locally\ncompact group is hyperfinite (\\`a la Connes-Feldman-Weiss) precisely when it is\n'hypercompact'. This implies an uncountable version of the Ornstein-Weiss\nTheorem and that every locally compact group admitting a hypercompact\nprobability preserving free action is amenable. We also establish an\nuncountable version of Danilenko's Random Ratio Ergodic Theorem. From this we\ndeduce the 'Hopf dichotomy' for many nonsingular Bernoulli actions.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncountable Hyperfiniteness and The Random Ratio Ergodic Theorem\",\"authors\":\"Nachi Avraham-Re'em, George Peterzil\",\"doi\":\"arxiv-2409.02781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the orbit equivalence relation of a free action of a locally\\ncompact group is hyperfinite (\\\\`a la Connes-Feldman-Weiss) precisely when it is\\n'hypercompact'. This implies an uncountable version of the Ornstein-Weiss\\nTheorem and that every locally compact group admitting a hypercompact\\nprobability preserving free action is amenable. We also establish an\\nuncountable version of Danilenko's Random Ratio Ergodic Theorem. From this we\\ndeduce the 'Hopf dichotomy' for many nonsingular Bernoulli actions.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了局部紧密群的自由作用的轨道等价关系是超无限的(\`a la Connes-Feldman-Weiss),正是当它是 "超紧密 "时。这意味着奥恩斯坦-魏斯定理的不可数版本,以及每个局部紧密群都接纳超紧密概率保存自由作用是可处理的。我们还建立了丹尼连科随机比率遍历定理的不可数版本。由此,我们推导出许多非星形伯努利作用的 "霍普夫二分法"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncountable Hyperfiniteness and The Random Ratio Ergodic Theorem
We show that the orbit equivalence relation of a free action of a locally compact group is hyperfinite (\`a la Connes-Feldman-Weiss) precisely when it is 'hypercompact'. This implies an uncountable version of the Ornstein-Weiss Theorem and that every locally compact group admitting a hypercompact probability preserving free action is amenable. We also establish an uncountable version of Danilenko's Random Ratio Ergodic Theorem. From this we deduce the 'Hopf dichotomy' for many nonsingular Bernoulli actions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信