变量转换难以描述

H. Andréka, I. Németi, Zs. Tuza
{"title":"变量转换难以描述","authors":"H. Andréka, I. Németi, Zs. Tuza","doi":"arxiv-2409.04088","DOIUrl":null,"url":null,"abstract":"The function $p_{xy}$ that interchanges two logical variables $x,y$ in\nformulas is hard to describe in the following sense. Let $F$ denote the\nLindenbaum-Tarski formula-algebra of a finite-variable first order logic,\nendowed with $p_{xy}$ as a unary function. Each equational axiom system for the\nequational theory of $F$ has to contain, for each finite $n$, an equation that\ncontains together with $p_{xy}$ at least $n$ algebraic variables, and each of\nthe operations $\\exists, =, \\lor$. This solves a problem raised by Johnson [J.\nSymb. Logic] more than 50 years ago: the class of representable polyadic\nequality algebras of a finite dimension $n\\ge 3$ cannot be axiomatized by\nadding finitely many equations to the equational theory of representable\ncylindric algebras of dimension $n$. Consequences for proof systems of\nfinite-variable logic and for defining equations of polyadic equality algebras\nare given.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transposition of variables is hard to describe\",\"authors\":\"H. Andréka, I. Németi, Zs. Tuza\",\"doi\":\"arxiv-2409.04088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The function $p_{xy}$ that interchanges two logical variables $x,y$ in\\nformulas is hard to describe in the following sense. Let $F$ denote the\\nLindenbaum-Tarski formula-algebra of a finite-variable first order logic,\\nendowed with $p_{xy}$ as a unary function. Each equational axiom system for the\\nequational theory of $F$ has to contain, for each finite $n$, an equation that\\ncontains together with $p_{xy}$ at least $n$ algebraic variables, and each of\\nthe operations $\\\\exists, =, \\\\lor$. This solves a problem raised by Johnson [J.\\nSymb. Logic] more than 50 years ago: the class of representable polyadic\\nequality algebras of a finite dimension $n\\\\ge 3$ cannot be axiomatized by\\nadding finitely many equations to the equational theory of representable\\ncylindric algebras of dimension $n$. Consequences for proof systems of\\nfinite-variable logic and for defining equations of polyadic equality algebras\\nare given.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

交换两个逻辑变量 $x,y$ 信息式的函数 $p_{xy}$ 在以下意义上很难描述。让 $F$ 表示有限变量一阶逻辑的林登鲍姆-塔尔斯基公式代数,并赋予 $p_{xy}$ 作为一元函数。对于每个有限的 $n$,$F$ 的方程理论的每个等式公理系统都必须包含一个等式,这个等式与 $p_{xy}$ 一起至少包含 $n$ 代数变量,以及 $exists, =, \lor$ 的每个运算。这就解决了约翰逊[J.Symb.Logic]在 50 多年前提出的一个问题:有限维数 $n\ge 3$ 的可表示多质点代数代数方程类不能通过在维数 $n$ 的可表示圆柱代数方程的方程理论中添加有限多个方程来公理化。给出了无穷变逻辑证明系统和定义多义相等代数方程的后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transposition of variables is hard to describe
The function $p_{xy}$ that interchanges two logical variables $x,y$ in formulas is hard to describe in the following sense. Let $F$ denote the Lindenbaum-Tarski formula-algebra of a finite-variable first order logic, endowed with $p_{xy}$ as a unary function. Each equational axiom system for the equational theory of $F$ has to contain, for each finite $n$, an equation that contains together with $p_{xy}$ at least $n$ algebraic variables, and each of the operations $\exists, =, \lor$. This solves a problem raised by Johnson [J. Symb. Logic] more than 50 years ago: the class of representable polyadic equality algebras of a finite dimension $n\ge 3$ cannot be axiomatized by adding finitely many equations to the equational theory of representable cylindric algebras of dimension $n$. Consequences for proof systems of finite-variable logic and for defining equations of polyadic equality algebras are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信