关于算术模型末端扩展的考夫曼--克洛特问题和弱正则原则

Mengzhou Sun
{"title":"关于算术模型末端扩展的考夫曼--克洛特问题和弱正则原则","authors":"Mengzhou Sun","doi":"arxiv-2409.03527","DOIUrl":null,"url":null,"abstract":"We investigate the end extendibility of models of arithmetic with restricted\nelementarity. By utilizing the restricted ultrapower construction in the\nsecond-order context, for each $n\\in\\mathbb{N}$ and any countable model of\n$\\mathrm{B}\\Sigma_{n+2}$, we construct a proper $\\Sigma_{n+2}$-elementary end\nextension satisfying $\\mathrm{B}\\Sigma_{n+1}$, which answers a question by\nClote positively. We also give a characterization of countable models of\n$\\mathrm{I}\\Sigma_{n+2}$ in terms of their end extendibility similar to the\ncase of $\\mathrm{B}\\Sigma_{n+2}$. Along the proof, we will introduce a new type\nof regularity principles in arithmetic called the weak regularity principle,\nwhich serves as a bridge between the model's end extendibility and the amount\nof induction or collection it satisfies.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Kaufmann--Clote question on end extensions of models of arithmetic and the weak regularity principle\",\"authors\":\"Mengzhou Sun\",\"doi\":\"arxiv-2409.03527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the end extendibility of models of arithmetic with restricted\\nelementarity. By utilizing the restricted ultrapower construction in the\\nsecond-order context, for each $n\\\\in\\\\mathbb{N}$ and any countable model of\\n$\\\\mathrm{B}\\\\Sigma_{n+2}$, we construct a proper $\\\\Sigma_{n+2}$-elementary end\\nextension satisfying $\\\\mathrm{B}\\\\Sigma_{n+1}$, which answers a question by\\nClote positively. We also give a characterization of countable models of\\n$\\\\mathrm{I}\\\\Sigma_{n+2}$ in terms of their end extendibility similar to the\\ncase of $\\\\mathrm{B}\\\\Sigma_{n+2}$. Along the proof, we will introduce a new type\\nof regularity principles in arithmetic called the weak regularity principle,\\nwhich serves as a bridge between the model's end extendibility and the amount\\nof induction or collection it satisfies.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有限制元素性的算术模型的末端可扩展性。通过在这些二阶上下文中利用受限超幂构造,对于每个 $n\in\mathbb{N}$ 和 $\mathrm{B}\Sigma_{n+2}$ 的任何可数模型,我们构造了一个满足 $\mathrm{B}\Sigma_{n+1}$ 的适当 $\Sigma_{n+2}$ 元末扩展,这正面回答了克洛特提出的一个问题。我们还给出了$\mathrm{I}\Sigma_{n+2}$的可数模型的特征,即它们的末端可扩展性类似于$\mathrm{B}\Sigma_{n+2}$的情况。在证明的过程中,我们将引入算术中一种新的正则原则,称为弱正则原则,它是模型的末端可扩展性与它所满足的归纳或集合量之间的桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Kaufmann--Clote question on end extensions of models of arithmetic and the weak regularity principle
We investigate the end extendibility of models of arithmetic with restricted elementarity. By utilizing the restricted ultrapower construction in the second-order context, for each $n\in\mathbb{N}$ and any countable model of $\mathrm{B}\Sigma_{n+2}$, we construct a proper $\Sigma_{n+2}$-elementary end extension satisfying $\mathrm{B}\Sigma_{n+1}$, which answers a question by Clote positively. We also give a characterization of countable models of $\mathrm{I}\Sigma_{n+2}$ in terms of their end extendibility similar to the case of $\mathrm{B}\Sigma_{n+2}$. Along the proof, we will introduce a new type of regularity principles in arithmetic called the weak regularity principle, which serves as a bridge between the model's end extendibility and the amount of induction or collection it satisfies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信