具有全球价值的领域:基础

Itaï Ben Yaacov, Pablo Destic, Ehud Hrushovski, Michał Szachniewicz
{"title":"具有全球价值的领域:基础","authors":"Itaï Ben Yaacov, Pablo Destic, Ehud Hrushovski, Michał Szachniewicz","doi":"arxiv-2409.04570","DOIUrl":null,"url":null,"abstract":"We present foundations of globally valued fields, i.e., of a class of fields\nwith an extra structure, capturing some aspects of the geometry of global\nfields, based on the product formula. We provide a dictionary between various\ndata defining such extra structure: syntactic (models of some unbounded\ncontinuous logic theory), Arakelov theoretic, and measure theoretic. In\nparticular we obtain a representation theorem relating globally valued fields\nand adelic curves defined by Chen and Moriwaki.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Globally valued fields: foundations\",\"authors\":\"Itaï Ben Yaacov, Pablo Destic, Ehud Hrushovski, Michał Szachniewicz\",\"doi\":\"arxiv-2409.04570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present foundations of globally valued fields, i.e., of a class of fields\\nwith an extra structure, capturing some aspects of the geometry of global\\nfields, based on the product formula. We provide a dictionary between various\\ndata defining such extra structure: syntactic (models of some unbounded\\ncontinuous logic theory), Arakelov theoretic, and measure theoretic. In\\nparticular we obtain a representation theorem relating globally valued fields\\nand adelic curves defined by Chen and Moriwaki.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了全局值域的基础,即一类具有额外结构的域的基础,它捕捉了全局域几何的某些方面,并以积公式为基础。我们提供了定义这种额外结构的各种数据之间的字典:句法(某种无界连续逻辑理论的模型)、阿拉克洛夫理论和度量理论。特别是,我们得到了一个与全局有价域和陈和森胁定义的阿德尔曲线相关的表示定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Globally valued fields: foundations
We present foundations of globally valued fields, i.e., of a class of fields with an extra structure, capturing some aspects of the geometry of global fields, based on the product formula. We provide a dictionary between various data defining such extra structure: syntactic (models of some unbounded continuous logic theory), Arakelov theoretic, and measure theoretic. In particular we obtain a representation theorem relating globally valued fields and adelic curves defined by Chen and Moriwaki.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信