G. Bezhanishvili, F. Dashiell Jr, A. Moshier, J. Walters-Wayland
{"title":"通过布鲁克斯-拉克塞尔塔的连接分布度","authors":"G. Bezhanishvili, F. Dashiell Jr, A. Moshier, J. Walters-Wayland","doi":"arxiv-2409.04894","DOIUrl":null,"url":null,"abstract":"We utilize the Bruns-Lakser completion to introduce Bruns-Lakser towers of a\nmeet-semilattice. This machinery enables us to develop various hierarchies\ninside the class of bounded distributive lattices, which measure\n$\\kappa$-degrees of distributivity of bounded distributive lattices and their\nDedekind-MacNeille completions. We also use Priestley duality to obtain a dual\ncharacterization of the resulting hierarchies. Among other things, this yields\na natural generalization of Esakia's representation of Heyting lattices to\nproHeyting lattices.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degrees of join-distributivity via Bruns-Lakser towers\",\"authors\":\"G. Bezhanishvili, F. Dashiell Jr, A. Moshier, J. Walters-Wayland\",\"doi\":\"arxiv-2409.04894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We utilize the Bruns-Lakser completion to introduce Bruns-Lakser towers of a\\nmeet-semilattice. This machinery enables us to develop various hierarchies\\ninside the class of bounded distributive lattices, which measure\\n$\\\\kappa$-degrees of distributivity of bounded distributive lattices and their\\nDedekind-MacNeille completions. We also use Priestley duality to obtain a dual\\ncharacterization of the resulting hierarchies. Among other things, this yields\\na natural generalization of Esakia's representation of Heyting lattices to\\nproHeyting lattices.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Degrees of join-distributivity via Bruns-Lakser towers
We utilize the Bruns-Lakser completion to introduce Bruns-Lakser towers of a
meet-semilattice. This machinery enables us to develop various hierarchies
inside the class of bounded distributive lattices, which measure
$\kappa$-degrees of distributivity of bounded distributive lattices and their
Dedekind-MacNeille completions. We also use Priestley duality to obtain a dual
characterization of the resulting hierarchies. Among other things, this yields
a natural generalization of Esakia's representation of Heyting lattices to
proHeyting lattices.