通过布鲁克斯-拉克塞尔塔的连接分布度

G. Bezhanishvili, F. Dashiell Jr, A. Moshier, J. Walters-Wayland
{"title":"通过布鲁克斯-拉克塞尔塔的连接分布度","authors":"G. Bezhanishvili, F. Dashiell Jr, A. Moshier, J. Walters-Wayland","doi":"arxiv-2409.04894","DOIUrl":null,"url":null,"abstract":"We utilize the Bruns-Lakser completion to introduce Bruns-Lakser towers of a\nmeet-semilattice. This machinery enables us to develop various hierarchies\ninside the class of bounded distributive lattices, which measure\n$\\kappa$-degrees of distributivity of bounded distributive lattices and their\nDedekind-MacNeille completions. We also use Priestley duality to obtain a dual\ncharacterization of the resulting hierarchies. Among other things, this yields\na natural generalization of Esakia's representation of Heyting lattices to\nproHeyting lattices.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degrees of join-distributivity via Bruns-Lakser towers\",\"authors\":\"G. Bezhanishvili, F. Dashiell Jr, A. Moshier, J. Walters-Wayland\",\"doi\":\"arxiv-2409.04894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We utilize the Bruns-Lakser completion to introduce Bruns-Lakser towers of a\\nmeet-semilattice. This machinery enables us to develop various hierarchies\\ninside the class of bounded distributive lattices, which measure\\n$\\\\kappa$-degrees of distributivity of bounded distributive lattices and their\\nDedekind-MacNeille completions. We also use Priestley duality to obtain a dual\\ncharacterization of the resulting hierarchies. Among other things, this yields\\na natural generalization of Esakia's representation of Heyting lattices to\\nproHeyting lattices.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用布鲁克斯-拉克塞完备性引入了有界分布网格的布鲁克斯-拉克塞塔。这一机制使我们能够在有界分布网格类中发展出各种层次结构,这些层次结构度量了有界分布网格的分布度及其戴德金-麦克尼尔完备性。我们还利用普里斯特里对偶性得到了所得到的层次的对偶特征。除其他外,这还产生了埃萨基亚的海廷网格表征在海廷网格之上的自然广义化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degrees of join-distributivity via Bruns-Lakser towers
We utilize the Bruns-Lakser completion to introduce Bruns-Lakser towers of a meet-semilattice. This machinery enables us to develop various hierarchies inside the class of bounded distributive lattices, which measure $\kappa$-degrees of distributivity of bounded distributive lattices and their Dedekind-MacNeille completions. We also use Priestley duality to obtain a dual characterization of the resulting hierarchies. Among other things, this yields a natural generalization of Esakia's representation of Heyting lattices to proHeyting lattices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信