深度均衡:存在性与可计算性

Samson Alva, Eduardo Dueñez, Jose Iovino, Claire Walton
{"title":"深度均衡:存在性与可计算性","authors":"Samson Alva, Eduardo Dueñez, Jose Iovino, Claire Walton","doi":"arxiv-2409.06064","DOIUrl":null,"url":null,"abstract":"We introduce a general concept of layered computation model, of which neural\nnetworks are a particular example, and combine tools of topological dynamics\nand model theory to study asymptotics of such models. We prove that, as the\nnumber of layers of a computation grows, the computation reaches a state of\n``deep equilibrium\" which amounts to a single, self-referential layer. After\nproving the existence of deep equilibria under fairly general hypotheses, we\ncharacterize their computability.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Equilibria: Existence and Computability\",\"authors\":\"Samson Alva, Eduardo Dueñez, Jose Iovino, Claire Walton\",\"doi\":\"arxiv-2409.06064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a general concept of layered computation model, of which neural\\nnetworks are a particular example, and combine tools of topological dynamics\\nand model theory to study asymptotics of such models. We prove that, as the\\nnumber of layers of a computation grows, the computation reaches a state of\\n``deep equilibrium\\\" which amounts to a single, self-referential layer. After\\nproving the existence of deep equilibria under fairly general hypotheses, we\\ncharacterize their computability.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了分层计算模型的一般概念,神经网络是其中的一个特殊例子,并结合拓扑动力学和模型理论的工具来研究此类模型的渐近性。我们证明,随着计算层数的增加,计算会达到一种 "深度平衡 "状态,相当于一个单一的自反馈层。在证明了相当一般的假设下深度平衡的存在之后,我们描述了它们的可计算性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Equilibria: Existence and Computability
We introduce a general concept of layered computation model, of which neural networks are a particular example, and combine tools of topological dynamics and model theory to study asymptotics of such models. We prove that, as the number of layers of a computation grows, the computation reaches a state of ``deep equilibrium" which amounts to a single, self-referential layer. After proving the existence of deep equilibria under fairly general hypotheses, we characterize their computability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信