不完整性声明的分类

Henry Towsner, James Walsh
{"title":"不完整性声明的分类","authors":"Henry Towsner, James Walsh","doi":"arxiv-2409.05973","DOIUrl":null,"url":null,"abstract":"For which choices of $X,Y,Z\\in\\{\\Sigma^1_1,\\Pi^1_1\\}$ does no sufficiently\nstrong $X$-sound and $Y$-definable extension theory prove its own\n$Z$-soundness? We give a complete answer, thereby delimiting the\ngeneralizations of G\\\"odel's second incompleteness theorem that hold within\nsecond-order arithmetic.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A classification of incompleteness statements\",\"authors\":\"Henry Towsner, James Walsh\",\"doi\":\"arxiv-2409.05973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For which choices of $X,Y,Z\\\\in\\\\{\\\\Sigma^1_1,\\\\Pi^1_1\\\\}$ does no sufficiently\\nstrong $X$-sound and $Y$-definable extension theory prove its own\\n$Z$-soundness? We give a complete answer, thereby delimiting the\\ngeneralizations of G\\\\\\\"odel's second incompleteness theorem that hold within\\nsecond-order arithmetic.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于哪些$X,Y,Zin\{Sigma^1_1,\Pi^1_1\}$ 的选择,没有一个充分有力的$X$健全且$Y$可定义的扩展理论能证明其自身的$Z$健全性?我们给出了一个完整的答案,从而划定了在二阶算术中成立的G(odel)第二不完备性定理的一般化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A classification of incompleteness statements
For which choices of $X,Y,Z\in\{\Sigma^1_1,\Pi^1_1\}$ does no sufficiently strong $X$-sound and $Y$-definable extension theory prove its own $Z$-soundness? We give a complete answer, thereby delimiting the generalizations of G\"odel's second incompleteness theorem that hold within second-order arithmetic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信