拓扑群的舒尔超滤波器和玻尔致密化

Serhii Bardyla, Pavol Zlatoš
{"title":"拓扑群的舒尔超滤波器和玻尔致密化","authors":"Serhii Bardyla, Pavol Zlatoš","doi":"arxiv-2409.07280","DOIUrl":null,"url":null,"abstract":"In this paper we investigate Schur ultrafilters on groups. Using the\nalgebraic structure of Stone-\\v{C}ech compactifications of discrete groups and\nSchur ultrafilters, we give a new description of Bohr compactifications of\ntopological groups. This approach allows us to characterize chart groups that\nare topological groups. Namely, a chart group $G$ is a topological group if and\nonly if each Schur ultrafilter on $G$ converges to the unit of $G$.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schur ultrafilters and Bohr compactifications of topological groups\",\"authors\":\"Serhii Bardyla, Pavol Zlatoš\",\"doi\":\"arxiv-2409.07280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate Schur ultrafilters on groups. Using the\\nalgebraic structure of Stone-\\\\v{C}ech compactifications of discrete groups and\\nSchur ultrafilters, we give a new description of Bohr compactifications of\\ntopological groups. This approach allows us to characterize chart groups that\\nare topological groups. Namely, a chart group $G$ is a topological group if and\\nonly if each Schur ultrafilter on $G$ converges to the unit of $G$.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了群上的舒尔超滤波器。利用离散群的 Stone-\v{C}ech 压缩的代数结构和舒尔超滤波器,我们给出了拓扑群的玻尔压缩的新描述。通过这种方法,我们可以描述作为拓扑群的图群的特征。也就是说,只有当且仅当 $G$ 上的每个舒尔超滤波器都收敛于 $G$ 的单位时,图群 $G$ 才是拓扑群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schur ultrafilters and Bohr compactifications of topological groups
In this paper we investigate Schur ultrafilters on groups. Using the algebraic structure of Stone-\v{C}ech compactifications of discrete groups and Schur ultrafilters, we give a new description of Bohr compactifications of topological groups. This approach allows us to characterize chart groups that are topological groups. Namely, a chart group $G$ is a topological group if and only if each Schur ultrafilter on $G$ converges to the unit of $G$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信