{"title":"拓扑群的舒尔超滤波器和玻尔致密化","authors":"Serhii Bardyla, Pavol Zlatoš","doi":"arxiv-2409.07280","DOIUrl":null,"url":null,"abstract":"In this paper we investigate Schur ultrafilters on groups. Using the\nalgebraic structure of Stone-\\v{C}ech compactifications of discrete groups and\nSchur ultrafilters, we give a new description of Bohr compactifications of\ntopological groups. This approach allows us to characterize chart groups that\nare topological groups. Namely, a chart group $G$ is a topological group if and\nonly if each Schur ultrafilter on $G$ converges to the unit of $G$.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schur ultrafilters and Bohr compactifications of topological groups\",\"authors\":\"Serhii Bardyla, Pavol Zlatoš\",\"doi\":\"arxiv-2409.07280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate Schur ultrafilters on groups. Using the\\nalgebraic structure of Stone-\\\\v{C}ech compactifications of discrete groups and\\nSchur ultrafilters, we give a new description of Bohr compactifications of\\ntopological groups. This approach allows us to characterize chart groups that\\nare topological groups. Namely, a chart group $G$ is a topological group if and\\nonly if each Schur ultrafilter on $G$ converges to the unit of $G$.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Schur ultrafilters and Bohr compactifications of topological groups
In this paper we investigate Schur ultrafilters on groups. Using the
algebraic structure of Stone-\v{C}ech compactifications of discrete groups and
Schur ultrafilters, we give a new description of Bohr compactifications of
topological groups. This approach allows us to characterize chart groups that
are topological groups. Namely, a chart group $G$ is a topological group if and
only if each Schur ultrafilter on $G$ converges to the unit of $G$.