{"title":"自下而上建立确定性模型","authors":"Obrad Kasum, Grigor Sargsyan","doi":"arxiv-2409.07156","DOIUrl":null,"url":null,"abstract":"We present an $L$-like construction that produces the minimal model of\n$\\mathsf{AD}_\\mathbb{R}+$\"$\\Theta$ is regular\". In fact, our construction can\nproduce any model of\n$\\mathsf{AD}^++\\mathsf{AD}_\\mathbb{R}+V=L(\\mathcal{P}(\\mathbb{R}))$ in which\nthere is no hod mouse with a measurable limit of Woodins.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building Models of Determinacy from Below\",\"authors\":\"Obrad Kasum, Grigor Sargsyan\",\"doi\":\"arxiv-2409.07156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an $L$-like construction that produces the minimal model of\\n$\\\\mathsf{AD}_\\\\mathbb{R}+$\\\"$\\\\Theta$ is regular\\\". In fact, our construction can\\nproduce any model of\\n$\\\\mathsf{AD}^++\\\\mathsf{AD}_\\\\mathbb{R}+V=L(\\\\mathcal{P}(\\\\mathbb{R}))$ in which\\nthere is no hod mouse with a measurable limit of Woodins.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present an $L$-like construction that produces the minimal model of
$\mathsf{AD}_\mathbb{R}+$"$\Theta$ is regular". In fact, our construction can
produce any model of
$\mathsf{AD}^++\mathsf{AD}_\mathbb{R}+V=L(\mathcal{P}(\mathbb{R}))$ in which
there is no hod mouse with a measurable limit of Woodins.