时值约束满足问题

Manuel Bodirsky, Édouard Bonnet, Žaneta Semanišinová
{"title":"时值约束满足问题","authors":"Manuel Bodirsky, Édouard Bonnet, Žaneta Semanišinová","doi":"arxiv-2409.07285","DOIUrl":null,"url":null,"abstract":"We study the complexity of the valued constraint satisfaction problem (VCSP)\nfor every valued structure with the domain ${\\mathbb Q}$ that is preserved by\nall order-preserving bijections. Such VCSPs will be called temporal, in analogy\nto the (classical) constraint satisfaction problem: a relational structure is\npreserved by all order-preserving bijections if and only if all its relations\nhave a first-order definition in $({\\mathbb Q};<)$, and the CSPs for such\nstructures are called temporal CSPs. Many optimization problems that have been\nstudied intensively in the literature can be phrased as a temporal VCSP. We\nprove that a temporal VCSP is in P, or NP-complete. Our analysis uses the\nconcept of fractional polymorphisms; this is the first dichotomy result for\nVCSPs over infinite domains which is complete in the sense that it treats all\nvalued structures with a given automorphism group.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal Valued Constraint Satisfaction Problems\",\"authors\":\"Manuel Bodirsky, Édouard Bonnet, Žaneta Semanišinová\",\"doi\":\"arxiv-2409.07285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the complexity of the valued constraint satisfaction problem (VCSP)\\nfor every valued structure with the domain ${\\\\mathbb Q}$ that is preserved by\\nall order-preserving bijections. Such VCSPs will be called temporal, in analogy\\nto the (classical) constraint satisfaction problem: a relational structure is\\npreserved by all order-preserving bijections if and only if all its relations\\nhave a first-order definition in $({\\\\mathbb Q};<)$, and the CSPs for such\\nstructures are called temporal CSPs. Many optimization problems that have been\\nstudied intensively in the literature can be phrased as a temporal VCSP. We\\nprove that a temporal VCSP is in P, or NP-complete. Our analysis uses the\\nconcept of fractional polymorphisms; this is the first dichotomy result for\\nVCSPs over infinite domains which is complete in the sense that it treats all\\nvalued structures with a given automorphism group.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们要研究的是每一种有值结构的有值约束满足问题(VCSP)的复杂性,这种结构的域${{mathbb Q}$是由所有保序投射所保留的。与(经典)约束满足问题类比,这种 VCSP 将被称为时序问题:当且仅当一个关系结构的所有关系在 $({\mathbb Q};<)$ 中都有一阶定义时,该关系结构才会被所有保序投射所保留,而这种结构的 CSP 被称为时序 CSP。许多在文献中被深入研究过的优化问题都可以表述为时态 VCSP。我们证明,时态 VCSP 在 P 或 NP-完备。我们的分析使用了分数多态性的概念;这是第一个针对无限域上的 VCSP 的二分法结果,它在处理具有给定自动形态群的所有值结构的意义上是完整的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal Valued Constraint Satisfaction Problems
We study the complexity of the valued constraint satisfaction problem (VCSP) for every valued structure with the domain ${\mathbb Q}$ that is preserved by all order-preserving bijections. Such VCSPs will be called temporal, in analogy to the (classical) constraint satisfaction problem: a relational structure is preserved by all order-preserving bijections if and only if all its relations have a first-order definition in $({\mathbb Q};<)$, and the CSPs for such structures are called temporal CSPs. Many optimization problems that have been studied intensively in the literature can be phrased as a temporal VCSP. We prove that a temporal VCSP is in P, or NP-complete. Our analysis uses the concept of fractional polymorphisms; this is the first dichotomy result for VCSPs over infinite domains which is complete in the sense that it treats all valued structures with a given automorphism group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信