揭开深度阴影的面纱:深度学习时代图像和视频阴影检测、去除和生成概览

Xiaowei Hu, Zhenghao Xing, Tianyu Wang, Chi-Wing Fu, Pheng-Ann Heng
{"title":"揭开深度阴影的面纱:深度学习时代图像和视频阴影检测、去除和生成概览","authors":"Xiaowei Hu, Zhenghao Xing, Tianyu Wang, Chi-Wing Fu, Pheng-Ann Heng","doi":"arxiv-2409.02108","DOIUrl":null,"url":null,"abstract":"Shadows are formed when light encounters obstacles, leading to areas of\ndiminished illumination. In computer vision, shadow detection, removal, and\ngeneration are crucial for enhancing scene understanding, refining image\nquality, ensuring visual consistency in video editing, and improving virtual\nenvironments. This paper presents a comprehensive survey of shadow detection,\nremoval, and generation in images and videos within the deep learning landscape\nover the past decade, covering tasks, deep models, datasets, and evaluation\nmetrics. Our key contributions include a comprehensive survey of shadow\nanalysis, standardization of experimental comparisons, exploration of the\nrelationships among model size, speed, and performance, a cross-dataset\ngeneralization study, identification of open issues and future directions, and\nprovision of publicly available resources to support further research.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling Deep Shadows: A Survey on Image and Video Shadow Detection, Removal, and Generation in the Era of Deep Learning\",\"authors\":\"Xiaowei Hu, Zhenghao Xing, Tianyu Wang, Chi-Wing Fu, Pheng-Ann Heng\",\"doi\":\"arxiv-2409.02108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shadows are formed when light encounters obstacles, leading to areas of\\ndiminished illumination. In computer vision, shadow detection, removal, and\\ngeneration are crucial for enhancing scene understanding, refining image\\nquality, ensuring visual consistency in video editing, and improving virtual\\nenvironments. This paper presents a comprehensive survey of shadow detection,\\nremoval, and generation in images and videos within the deep learning landscape\\nover the past decade, covering tasks, deep models, datasets, and evaluation\\nmetrics. Our key contributions include a comprehensive survey of shadow\\nanalysis, standardization of experimental comparisons, exploration of the\\nrelationships among model size, speed, and performance, a cross-dataset\\ngeneralization study, identification of open issues and future directions, and\\nprovision of publicly available resources to support further research.\",\"PeriodicalId\":501480,\"journal\":{\"name\":\"arXiv - CS - Multimedia\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当光线遇到障碍物时就会形成阴影,从而导致光照减弱。在计算机视觉领域,阴影的检测、去除和生成对于增强场景理解、提高图像质量、确保视频编辑中的视觉一致性以及改善虚拟环境至关重要。本文对过去十年深度学习领域中图像和视频中的阴影检测、移除和生成进行了全面研究,涵盖了任务、深度模型、数据集和评估指标。我们的主要贡献包括对阴影分析的全面调查,实验比较的标准化,对模型大小、速度和性能之间关系的探索,跨数据集泛化研究,确定开放问题和未来方向,以及提供公开可用的资源以支持进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling Deep Shadows: A Survey on Image and Video Shadow Detection, Removal, and Generation in the Era of Deep Learning
Shadows are formed when light encounters obstacles, leading to areas of diminished illumination. In computer vision, shadow detection, removal, and generation are crucial for enhancing scene understanding, refining image quality, ensuring visual consistency in video editing, and improving virtual environments. This paper presents a comprehensive survey of shadow detection, removal, and generation in images and videos within the deep learning landscape over the past decade, covering tasks, deep models, datasets, and evaluation metrics. Our key contributions include a comprehensive survey of shadow analysis, standardization of experimental comparisons, exploration of the relationships among model size, speed, and performance, a cross-dataset generalization study, identification of open issues and future directions, and provision of publicly available resources to support further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信