钢铁工业的环境库兹涅茨曲线:来自 30 个主要钢铁生产国的证据

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Yanmin Shao, Junlong Li, Yifei Wang
{"title":"钢铁工业的环境库兹涅茨曲线:来自 30 个主要钢铁生产国的证据","authors":"Yanmin Shao, Junlong Li, Yifei Wang","doi":"10.1007/s10668-024-05319-5","DOIUrl":null,"url":null,"abstract":"<p>With the growing attention on carbon neutrality, the transformation to low-carbon production is the most pressing global mission today. The Environmental Kuznets Curve (EKC) is frequently used to develop carbon neutrality roadmaps for various industries and even entire nations, but few scholars have applied it to the iron and steel industry (IaSI). According to the International Monetary Fund, the global IaSI accounts for 7% of total CO<sub>2</sub> emissions, making it a key sector for emissions in manufacturing. Given the high industrial linkages of the IaSI, it’s crucial to focus on its CO<sub>2</sub> emission patterns. This paper investigates the EKC hypothesis in the IaSI using data from 30 countries from 1990 to 2019. The results show that the EKC hypothesis is valid in the global IaSI. The study suggests that CO<sub>2</sub> emissions of the IaSI will peak when the per capita real GDP reaches $17,535 (constant price in 2010). Unlike emerging economies, the IaSI in advanced economies has reached the carbon peak. The robustness of this result is verified by an appropriate U test. Our results also show that a 1% increase in crude steel production will increase the CO<sub>2</sub> emissions of the IaSI by 0.675%; however, expanding the proportion of using electric arc furnaces to produce crude steel can substantially reduce CO<sub>2</sub> emissions. Discussions on the EKC curve of IaSI reveal significant policy implications for countries striving to achieve carbon peaking and neutrality targets.</p>","PeriodicalId":540,"journal":{"name":"Environment, Development and Sustainability","volume":"8 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental kuznets curve in the iron and steel industry: evidence from 30 major steel-producing countries\",\"authors\":\"Yanmin Shao, Junlong Li, Yifei Wang\",\"doi\":\"10.1007/s10668-024-05319-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the growing attention on carbon neutrality, the transformation to low-carbon production is the most pressing global mission today. The Environmental Kuznets Curve (EKC) is frequently used to develop carbon neutrality roadmaps for various industries and even entire nations, but few scholars have applied it to the iron and steel industry (IaSI). According to the International Monetary Fund, the global IaSI accounts for 7% of total CO<sub>2</sub> emissions, making it a key sector for emissions in manufacturing. Given the high industrial linkages of the IaSI, it’s crucial to focus on its CO<sub>2</sub> emission patterns. This paper investigates the EKC hypothesis in the IaSI using data from 30 countries from 1990 to 2019. The results show that the EKC hypothesis is valid in the global IaSI. The study suggests that CO<sub>2</sub> emissions of the IaSI will peak when the per capita real GDP reaches $17,535 (constant price in 2010). Unlike emerging economies, the IaSI in advanced economies has reached the carbon peak. The robustness of this result is verified by an appropriate U test. Our results also show that a 1% increase in crude steel production will increase the CO<sub>2</sub> emissions of the IaSI by 0.675%; however, expanding the proportion of using electric arc furnaces to produce crude steel can substantially reduce CO<sub>2</sub> emissions. Discussions on the EKC curve of IaSI reveal significant policy implications for countries striving to achieve carbon peaking and neutrality targets.</p>\",\"PeriodicalId\":540,\"journal\":{\"name\":\"Environment, Development and Sustainability\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment, Development and Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10668-024-05319-5\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment, Development and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10668-024-05319-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

随着碳中和问题日益受到关注,向低碳生产转型已成为当今最紧迫的全球任务。环境库兹涅茨曲线(EKC)经常被用来为各行各业甚至整个国家制定碳中和路线图,但很少有学者将其应用于钢铁工业(IaSI)。根据国际货币基金组织的数据,全球钢铁工业(IaSI)的二氧化碳排放量占总排放量的 7%,是制造业排放的关键部门。鉴于 IaSI 的高度产业关联性,关注其二氧化碳排放模式至关重要。本文利用 1990 年至 2019 年 30 个国家的数据研究了 IaSI 中的 EKC 假设。结果表明,EKC 假说在全球 IaSI 中是有效的。研究表明,当人均实际 GDP 达到 17,535 美元(2010 年不变价格)时,IaSI 的二氧化碳排放量将达到峰值。与新兴经济体不同,发达经济体的 IaSI 已达到碳排放峰值。这一结果的稳健性通过适当的 U 检验得到了验证。我们的结果还显示,粗钢产量每增加 1%,IaSI 的二氧化碳排放量将增加 0.675%;然而,扩大使用电弧炉生产粗钢的比例可大幅减少二氧化碳排放量。关于 IaSI 的 EKC 曲线的讨论揭示了对努力实现碳峰值和碳中和目标的国家具有重要的政策意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Environmental kuznets curve in the iron and steel industry: evidence from 30 major steel-producing countries

Environmental kuznets curve in the iron and steel industry: evidence from 30 major steel-producing countries

With the growing attention on carbon neutrality, the transformation to low-carbon production is the most pressing global mission today. The Environmental Kuznets Curve (EKC) is frequently used to develop carbon neutrality roadmaps for various industries and even entire nations, but few scholars have applied it to the iron and steel industry (IaSI). According to the International Monetary Fund, the global IaSI accounts for 7% of total CO2 emissions, making it a key sector for emissions in manufacturing. Given the high industrial linkages of the IaSI, it’s crucial to focus on its CO2 emission patterns. This paper investigates the EKC hypothesis in the IaSI using data from 30 countries from 1990 to 2019. The results show that the EKC hypothesis is valid in the global IaSI. The study suggests that CO2 emissions of the IaSI will peak when the per capita real GDP reaches $17,535 (constant price in 2010). Unlike emerging economies, the IaSI in advanced economies has reached the carbon peak. The robustness of this result is verified by an appropriate U test. Our results also show that a 1% increase in crude steel production will increase the CO2 emissions of the IaSI by 0.675%; however, expanding the proportion of using electric arc furnaces to produce crude steel can substantially reduce CO2 emissions. Discussions on the EKC curve of IaSI reveal significant policy implications for countries striving to achieve carbon peaking and neutrality targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environment, Development and Sustainability
Environment, Development and Sustainability Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
10.20
自引率
6.10%
发文量
754
期刊介绍: Environment, Development and Sustainability is an international and multidisciplinary journal covering all aspects of the environmental impacts of socio-economic development. It is also concerned with the complex interactions which occur between development and environment, and its purpose is to seek ways and means for achieving sustainability in all human activities aimed at such development. The subject matter of the journal includes the following and related issues: -mutual interactions among society, development and environment, and their implications for sustainable development -technical, economic, ethical and philosophical aspects of sustainable development -global sustainability - the obstacles and ways in which they could be overcome -local and regional sustainability initiatives, their practical implementation, and relevance for use in a wider context -development and application of indicators of sustainability -development, verification, implementation and monitoring of policies for sustainable development -sustainable use of land, water, energy and biological resources in development -impacts of agriculture and forestry activities on soil and aquatic ecosystems and biodiversity -effects of energy use and global climate change on development and sustainability -impacts of population growth and human activities on food and other essential resources for development -role of national and international agencies, and of international aid and trade arrangements in sustainable development -social and cultural contexts of sustainable development -role of education and public awareness in sustainable development -role of political and economic instruments in sustainable development -shortcomings of sustainable development and its alternatives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信