{"title":"探索使用微藻生物柴油和柴油混合燃料的双燃料 CI 发动机的性能和排放特性:使用 ANN 和响应面方法的机器学习方法","authors":"Chandrabhushan Tiwari, Gaurav Dwivedi, Tikendra Nath Verma","doi":"10.1007/s10668-024-05362-2","DOIUrl":null,"url":null,"abstract":"<p>Alternative fuels in internal combustion engines have gained significant attention to environmental sustainability and energy security. The study employs a machine-learning (ML) approach, integrating artificial neural networks (ANN) and response surface method (RSM), to analyze the engine characteristics. The experimental data used to train the ANN and RSM model was obtained by employing different combinations of input parameters obtained by the Design of the experiment tool. Four input parameters load 25–100% ((1.3, 2.6, 3.9, and 5.2 kW) loading condition, speed (1200, 1500, and 1800 RPM), compression ratio (17.5 and 18.5), and biodiesel–diesel blends (Diesel, SM<sub>20</sub>, SM<sub>40</sub>, SM<sub>60</sub>, SM<sub>80</sub> and SM<sub>100</sub>) were used. The results show predictability for ANN with training and test regression coefficients (R<sup>2</sup>) of 0.975 and 0.948 whereas RSM with R<sup>2</sup> of 0.992. Optimized results for RSM and ANN, BTE (29.4% and 29.1%), BSFC (0.0.3201 and 0.334 kg/kWh), IMEP (2.83 and 2.69 bar), and CO<sub>2</sub> (922.72 and 940.87 g/kwh), NOx (964 and 937 ppm). When compared with experimental data, the error was about 5%. It can be inferred that RSM and ANN may be used to model processes with high predictability and that optimization can be carried out using various techniques depending on the process or problem.</p>","PeriodicalId":540,"journal":{"name":"Environment, Development and Sustainability","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the performance and emission characteristics of a dual fuel CI engine using microalgae biodiesel and diesel blend: a machine learning approach using ANN and response surface methodology\",\"authors\":\"Chandrabhushan Tiwari, Gaurav Dwivedi, Tikendra Nath Verma\",\"doi\":\"10.1007/s10668-024-05362-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Alternative fuels in internal combustion engines have gained significant attention to environmental sustainability and energy security. The study employs a machine-learning (ML) approach, integrating artificial neural networks (ANN) and response surface method (RSM), to analyze the engine characteristics. The experimental data used to train the ANN and RSM model was obtained by employing different combinations of input parameters obtained by the Design of the experiment tool. Four input parameters load 25–100% ((1.3, 2.6, 3.9, and 5.2 kW) loading condition, speed (1200, 1500, and 1800 RPM), compression ratio (17.5 and 18.5), and biodiesel–diesel blends (Diesel, SM<sub>20</sub>, SM<sub>40</sub>, SM<sub>60</sub>, SM<sub>80</sub> and SM<sub>100</sub>) were used. The results show predictability for ANN with training and test regression coefficients (R<sup>2</sup>) of 0.975 and 0.948 whereas RSM with R<sup>2</sup> of 0.992. Optimized results for RSM and ANN, BTE (29.4% and 29.1%), BSFC (0.0.3201 and 0.334 kg/kWh), IMEP (2.83 and 2.69 bar), and CO<sub>2</sub> (922.72 and 940.87 g/kwh), NOx (964 and 937 ppm). When compared with experimental data, the error was about 5%. It can be inferred that RSM and ANN may be used to model processes with high predictability and that optimization can be carried out using various techniques depending on the process or problem.</p>\",\"PeriodicalId\":540,\"journal\":{\"name\":\"Environment, Development and Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment, Development and Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10668-024-05362-2\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment, Development and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10668-024-05362-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Exploring the performance and emission characteristics of a dual fuel CI engine using microalgae biodiesel and diesel blend: a machine learning approach using ANN and response surface methodology
Alternative fuels in internal combustion engines have gained significant attention to environmental sustainability and energy security. The study employs a machine-learning (ML) approach, integrating artificial neural networks (ANN) and response surface method (RSM), to analyze the engine characteristics. The experimental data used to train the ANN and RSM model was obtained by employing different combinations of input parameters obtained by the Design of the experiment tool. Four input parameters load 25–100% ((1.3, 2.6, 3.9, and 5.2 kW) loading condition, speed (1200, 1500, and 1800 RPM), compression ratio (17.5 and 18.5), and biodiesel–diesel blends (Diesel, SM20, SM40, SM60, SM80 and SM100) were used. The results show predictability for ANN with training and test regression coefficients (R2) of 0.975 and 0.948 whereas RSM with R2 of 0.992. Optimized results for RSM and ANN, BTE (29.4% and 29.1%), BSFC (0.0.3201 and 0.334 kg/kWh), IMEP (2.83 and 2.69 bar), and CO2 (922.72 and 940.87 g/kwh), NOx (964 and 937 ppm). When compared with experimental data, the error was about 5%. It can be inferred that RSM and ANN may be used to model processes with high predictability and that optimization can be carried out using various techniques depending on the process or problem.
期刊介绍:
Environment, Development and Sustainability is an international and multidisciplinary journal covering all aspects of the environmental impacts of socio-economic development. It is also concerned with the complex interactions which occur between development and environment, and its purpose is to seek ways and means for achieving sustainability in all human activities aimed at such development. The subject matter of the journal includes the following and related issues:
-mutual interactions among society, development and environment, and their implications for sustainable development
-technical, economic, ethical and philosophical aspects of sustainable development
-global sustainability - the obstacles and ways in which they could be overcome
-local and regional sustainability initiatives, their practical implementation, and relevance for use in a wider context
-development and application of indicators of sustainability
-development, verification, implementation and monitoring of policies for sustainable development
-sustainable use of land, water, energy and biological resources in development
-impacts of agriculture and forestry activities on soil and aquatic ecosystems and biodiversity
-effects of energy use and global climate change on development and sustainability
-impacts of population growth and human activities on food and other essential resources for development
-role of national and international agencies, and of international aid and trade arrangements in sustainable development
-social and cultural contexts of sustainable development
-role of education and public awareness in sustainable development
-role of political and economic instruments in sustainable development
-shortcomings of sustainable development and its alternatives.