{"title":"中国粮食生产系统的复原力-可持续性耦合协调分析","authors":"Hongpeng Guo, Hongshan Chen, Chulin Pan, Shuang Xu, Qingyong Lei, Xiaoyan Liu","doi":"10.1007/s10668-024-05316-8","DOIUrl":null,"url":null,"abstract":"<p>Food production systems are faced with increasingly emerging pressures. Worldwide affairs like the Russia-Ukraine war and Covid-19 have raised our concerns about the ability to maintain a steady food supply at a stable price. Food security remains a problem to be addressed, especially taking the growing global population into consideration. This study aims to contribute to global food security by exploring the coupling relationship between resilience and sustainability of China’s food production system. An evaluation system to measure the elasticity and sustainability of China’s food production system was established, and the comprehensive evaluation value, coupling coordination degree, coupling coordination degree and coupling coordinated development type were quantitatively analyzed using entropy evaluation, comprehensive evaluation index model, coupling coordination model and related development level model. The results of our study are as follows. First, the level of resilience and sustainability of China’s food production system fluctuates and is generally on the rise. Second, the coordination level of internal coupling between the resilience and sustainability of China’s food production system is generally on the rise, but the degree of coupling coordination is still at a low level in some years. Third, in terms of comparative development, the resilience of China’s grain production system lagged behind its sustainability, and it only reached a state of synchronous development in 2019. The research findings will provide guidance to the adaptation between the resilience and sustainability of the Chinese food production system and inspire the formulation of related policies.</p>","PeriodicalId":540,"journal":{"name":"Environment, Development and Sustainability","volume":"32 3 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A resilience-sustainability coupling coordination analysis of the Chinese food production system\",\"authors\":\"Hongpeng Guo, Hongshan Chen, Chulin Pan, Shuang Xu, Qingyong Lei, Xiaoyan Liu\",\"doi\":\"10.1007/s10668-024-05316-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Food production systems are faced with increasingly emerging pressures. Worldwide affairs like the Russia-Ukraine war and Covid-19 have raised our concerns about the ability to maintain a steady food supply at a stable price. Food security remains a problem to be addressed, especially taking the growing global population into consideration. This study aims to contribute to global food security by exploring the coupling relationship between resilience and sustainability of China’s food production system. An evaluation system to measure the elasticity and sustainability of China’s food production system was established, and the comprehensive evaluation value, coupling coordination degree, coupling coordination degree and coupling coordinated development type were quantitatively analyzed using entropy evaluation, comprehensive evaluation index model, coupling coordination model and related development level model. The results of our study are as follows. First, the level of resilience and sustainability of China’s food production system fluctuates and is generally on the rise. Second, the coordination level of internal coupling between the resilience and sustainability of China’s food production system is generally on the rise, but the degree of coupling coordination is still at a low level in some years. Third, in terms of comparative development, the resilience of China’s grain production system lagged behind its sustainability, and it only reached a state of synchronous development in 2019. The research findings will provide guidance to the adaptation between the resilience and sustainability of the Chinese food production system and inspire the formulation of related policies.</p>\",\"PeriodicalId\":540,\"journal\":{\"name\":\"Environment, Development and Sustainability\",\"volume\":\"32 3 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment, Development and Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10668-024-05316-8\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment, Development and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10668-024-05316-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A resilience-sustainability coupling coordination analysis of the Chinese food production system
Food production systems are faced with increasingly emerging pressures. Worldwide affairs like the Russia-Ukraine war and Covid-19 have raised our concerns about the ability to maintain a steady food supply at a stable price. Food security remains a problem to be addressed, especially taking the growing global population into consideration. This study aims to contribute to global food security by exploring the coupling relationship between resilience and sustainability of China’s food production system. An evaluation system to measure the elasticity and sustainability of China’s food production system was established, and the comprehensive evaluation value, coupling coordination degree, coupling coordination degree and coupling coordinated development type were quantitatively analyzed using entropy evaluation, comprehensive evaluation index model, coupling coordination model and related development level model. The results of our study are as follows. First, the level of resilience and sustainability of China’s food production system fluctuates and is generally on the rise. Second, the coordination level of internal coupling between the resilience and sustainability of China’s food production system is generally on the rise, but the degree of coupling coordination is still at a low level in some years. Third, in terms of comparative development, the resilience of China’s grain production system lagged behind its sustainability, and it only reached a state of synchronous development in 2019. The research findings will provide guidance to the adaptation between the resilience and sustainability of the Chinese food production system and inspire the formulation of related policies.
期刊介绍:
Environment, Development and Sustainability is an international and multidisciplinary journal covering all aspects of the environmental impacts of socio-economic development. It is also concerned with the complex interactions which occur between development and environment, and its purpose is to seek ways and means for achieving sustainability in all human activities aimed at such development. The subject matter of the journal includes the following and related issues:
-mutual interactions among society, development and environment, and their implications for sustainable development
-technical, economic, ethical and philosophical aspects of sustainable development
-global sustainability - the obstacles and ways in which they could be overcome
-local and regional sustainability initiatives, their practical implementation, and relevance for use in a wider context
-development and application of indicators of sustainability
-development, verification, implementation and monitoring of policies for sustainable development
-sustainable use of land, water, energy and biological resources in development
-impacts of agriculture and forestry activities on soil and aquatic ecosystems and biodiversity
-effects of energy use and global climate change on development and sustainability
-impacts of population growth and human activities on food and other essential resources for development
-role of national and international agencies, and of international aid and trade arrangements in sustainable development
-social and cultural contexts of sustainable development
-role of education and public awareness in sustainable development
-role of political and economic instruments in sustainable development
-shortcomings of sustainable development and its alternatives.