大多数昼夜节律时钟基因在乳腺癌中以雌激素受体和孕激素受体状态依赖的方式表达

IF 2.1 4区 生物学 Q2 BIOLOGY
Caglar Berkel, Ercan Cacan
{"title":"大多数昼夜节律时钟基因在乳腺癌中以雌激素受体和孕激素受体状态依赖的方式表达","authors":"Caglar Berkel, Ercan Cacan","doi":"10.1007/s12038-024-00454-7","DOIUrl":null,"url":null,"abstract":"<p>Circadian clocks, biochemical oscillators that are regulated by environmental time cues including the day/night cycle, have a central function in the majority of biological processes. The disruption of the circadian clock can alter breast biology negatively and may promote the development of breast tumors. The expression status of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) were used to classify breast cancer into different molecular subtypes such as triple-negative breast cancer (TNBC). Receptor status-dependent expression of circadian clock genes have been previously studied in breast cancer using relatively small sample sizes in a particular population. Here, using TCGA-BRCA data (<i>n</i>=1119), we found that the expressions of <i>CRY1</i>, <i>PER1</i>, <i>PER2</i>, <i>PER3</i>, <i>BMAL1</i>, <i>CLOCK</i>, <i>RORA</i>, <i>RORB</i>, <i>RORC</i>, <i>NR1D1</i>, <i>NR1D2</i>, and <i>FBXL3</i> were higher in ER+ breast cancer cells compared with those of ER− status. Similarly, we showed that transcript levels of <i>CRY2</i>, <i>PER1</i>, <i>PER2</i>, <i>PER3</i>, <i>BMAL1</i>, <i>RORA</i>, <i>RORB</i>, <i>RORC</i>, <i>NR1D1</i>, <i>NR1D2</i>, and <i>FBXL3</i> were higher in PR+ breast cancer cells than in PR− breast cancer cells. We report that the expressions of <i>CRY2</i>, <i>PER1</i>, <i>BMAL1</i>, and <i>RORA</i> were lower, and the expression of <i>NR1D1</i> was higher, in HER2+ breast cancer cells compared with HER2− breast cancer cells. Moreover, we studied these receptor status-dependent changes in the expressions of circadian clock genes also based on the race and age of breast cancer patients. Lastly, we found that the expressions of <i>CRY2</i>, <i>PER1</i>, <i>PER2</i>, <i>PER3</i>, and <i>CLOCK</i> were higher in non-TNBC than in TNBC, which has the worst prognosis among subtypes. We note that our findings are not always parallel to the observations reported in previous studies with smaller sample sizes performed in different populations and organisms. Our study suggests that receptor status in breast cancer (thus, subtype of breast cancer) might be more important than previously shown in terms of its influence on the expression of circadian clock genes and on the disruption of the circadian clock, and that ER or PR might be important regulators of breast cancer chronobiology that should be taken into account in personalized chronotherapies.</p>","PeriodicalId":15171,"journal":{"name":"Journal of Biosciences","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A majority of circadian clock genes are expressed in estrogen receptor and progesterone receptor status-dependent manner in breast cancer\",\"authors\":\"Caglar Berkel, Ercan Cacan\",\"doi\":\"10.1007/s12038-024-00454-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Circadian clocks, biochemical oscillators that are regulated by environmental time cues including the day/night cycle, have a central function in the majority of biological processes. The disruption of the circadian clock can alter breast biology negatively and may promote the development of breast tumors. The expression status of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) were used to classify breast cancer into different molecular subtypes such as triple-negative breast cancer (TNBC). Receptor status-dependent expression of circadian clock genes have been previously studied in breast cancer using relatively small sample sizes in a particular population. Here, using TCGA-BRCA data (<i>n</i>=1119), we found that the expressions of <i>CRY1</i>, <i>PER1</i>, <i>PER2</i>, <i>PER3</i>, <i>BMAL1</i>, <i>CLOCK</i>, <i>RORA</i>, <i>RORB</i>, <i>RORC</i>, <i>NR1D1</i>, <i>NR1D2</i>, and <i>FBXL3</i> were higher in ER+ breast cancer cells compared with those of ER− status. Similarly, we showed that transcript levels of <i>CRY2</i>, <i>PER1</i>, <i>PER2</i>, <i>PER3</i>, <i>BMAL1</i>, <i>RORA</i>, <i>RORB</i>, <i>RORC</i>, <i>NR1D1</i>, <i>NR1D2</i>, and <i>FBXL3</i> were higher in PR+ breast cancer cells than in PR− breast cancer cells. We report that the expressions of <i>CRY2</i>, <i>PER1</i>, <i>BMAL1</i>, and <i>RORA</i> were lower, and the expression of <i>NR1D1</i> was higher, in HER2+ breast cancer cells compared with HER2− breast cancer cells. Moreover, we studied these receptor status-dependent changes in the expressions of circadian clock genes also based on the race and age of breast cancer patients. Lastly, we found that the expressions of <i>CRY2</i>, <i>PER1</i>, <i>PER2</i>, <i>PER3</i>, and <i>CLOCK</i> were higher in non-TNBC than in TNBC, which has the worst prognosis among subtypes. We note that our findings are not always parallel to the observations reported in previous studies with smaller sample sizes performed in different populations and organisms. Our study suggests that receptor status in breast cancer (thus, subtype of breast cancer) might be more important than previously shown in terms of its influence on the expression of circadian clock genes and on the disruption of the circadian clock, and that ER or PR might be important regulators of breast cancer chronobiology that should be taken into account in personalized chronotherapies.</p>\",\"PeriodicalId\":15171,\"journal\":{\"name\":\"Journal of Biosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12038-024-00454-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12038-024-00454-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

昼夜节律钟是受环境时间线索(包括昼夜周期)调节的生化振荡器,在大多数生物过程中发挥着核心功能。昼夜节律钟的紊乱会对乳腺生物学产生负面影响,并可能促进乳腺肿瘤的发展。雌激素受体(ER)、孕激素受体(PR)和人表皮生长因子受体 2(HER2)的表达状态被用来将乳腺癌分为不同的分子亚型,如三阴性乳腺癌(TNBC)。以前曾利用特定人群中相对较小的样本量研究了乳腺癌中昼夜节律时钟基因的受体状态依赖性表达。在此,我们利用 TCGA-BRCA 数据(n=1119)发现,与 ER- 状态的乳腺癌细胞相比,ER+ 状态的乳腺癌细胞中 CRY1、PER1、PER2、PER3、BMAL1、CLOCK、RORA、RORB、RORC、NR1D1、NR1D2 和 FBXL3 的表达量更高。同样,我们发现 CRY2、PER1、PER2、PER3、BMAL1、RORA、RORB、RORC、NR1D1、NR1D2 和 FBXL3 的转录水平在 PR+ 状态的乳腺癌细胞中高于 PR- 状态的乳腺癌细胞。我们发现,与 HER2-乳腺癌细胞相比,HER2+乳腺癌细胞中 CRY2、PER1、BMAL1 和 RORA 的表达量较低,而 NR1D1 的表达量较高。此外,我们还根据乳腺癌患者的种族和年龄,研究了昼夜节律时钟基因表达的这些受体状态依赖性变化。最后,我们发现 CRY2、PER1、PER2、PER3 和 CLOCK 在非 TNBC 中的表达高于 TNBC,而 TNBC 在各亚型中预后最差。我们注意到,我们的研究结果并不总是与以前在不同人群和生物体中进行的样本量较小的研究中的观察结果平行。我们的研究表明,乳腺癌中的受体状态(即乳腺癌亚型)对昼夜节律表基因表达的影响以及对昼夜节律表的破坏可能比以前的研究更重要,ER 或 PR 可能是乳腺癌时间生物学的重要调节因子,在个性化时间疗法中应加以考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A majority of circadian clock genes are expressed in estrogen receptor and progesterone receptor status-dependent manner in breast cancer

A majority of circadian clock genes are expressed in estrogen receptor and progesterone receptor status-dependent manner in breast cancer

Circadian clocks, biochemical oscillators that are regulated by environmental time cues including the day/night cycle, have a central function in the majority of biological processes. The disruption of the circadian clock can alter breast biology negatively and may promote the development of breast tumors. The expression status of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) were used to classify breast cancer into different molecular subtypes such as triple-negative breast cancer (TNBC). Receptor status-dependent expression of circadian clock genes have been previously studied in breast cancer using relatively small sample sizes in a particular population. Here, using TCGA-BRCA data (n=1119), we found that the expressions of CRY1, PER1, PER2, PER3, BMAL1, CLOCK, RORA, RORB, RORC, NR1D1, NR1D2, and FBXL3 were higher in ER+ breast cancer cells compared with those of ER− status. Similarly, we showed that transcript levels of CRY2, PER1, PER2, PER3, BMAL1, RORA, RORB, RORC, NR1D1, NR1D2, and FBXL3 were higher in PR+ breast cancer cells than in PR− breast cancer cells. We report that the expressions of CRY2, PER1, BMAL1, and RORA were lower, and the expression of NR1D1 was higher, in HER2+ breast cancer cells compared with HER2− breast cancer cells. Moreover, we studied these receptor status-dependent changes in the expressions of circadian clock genes also based on the race and age of breast cancer patients. Lastly, we found that the expressions of CRY2, PER1, PER2, PER3, and CLOCK were higher in non-TNBC than in TNBC, which has the worst prognosis among subtypes. We note that our findings are not always parallel to the observations reported in previous studies with smaller sample sizes performed in different populations and organisms. Our study suggests that receptor status in breast cancer (thus, subtype of breast cancer) might be more important than previously shown in terms of its influence on the expression of circadian clock genes and on the disruption of the circadian clock, and that ER or PR might be important regulators of breast cancer chronobiology that should be taken into account in personalized chronotherapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biosciences
Journal of Biosciences 生物-生物学
CiteScore
5.80
自引率
0.00%
发文量
83
审稿时长
3 months
期刊介绍: The Journal of Biosciences is a quarterly journal published by the Indian Academy of Sciences, Bangalore. It covers all areas of Biology and is the premier journal in the country within its scope. It is indexed in Current Contents and other standard Biological and Medical databases. The Journal of Biosciences began in 1934 as the Proceedings of the Indian Academy of Sciences (Section B). This continued until 1978 when it was split into three parts : Proceedings-Animal Sciences, Proceedings-Plant Sciences and Proceedings-Experimental Biology. Proceedings-Experimental Biology was renamed Journal of Biosciences in 1979; and in 1991, Proceedings-Animal Sciences and Proceedings-Plant Sciences merged with it.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信