基于 CLIP 的连体方法进行备忘录分类

Javier Huertas-Tato, Christos Koutlis, Symeon Papadopoulos, David Camacho, Ioannis Kompatsiaris
{"title":"基于 CLIP 的连体方法进行备忘录分类","authors":"Javier Huertas-Tato, Christos Koutlis, Symeon Papadopoulos, David Camacho, Ioannis Kompatsiaris","doi":"arxiv-2409.05772","DOIUrl":null,"url":null,"abstract":"Memes are an increasingly prevalent element of online discourse in social\nnetworks, especially among young audiences. They carry ideas and messages that\nrange from humorous to hateful, and are widely consumed. Their potentially high\nimpact requires adequate means of control to moderate their use in large scale.\nIn this work, we propose SimCLIP a deep learning-based architecture for\ncross-modal understanding of memes, leveraging a pre-trained CLIP encoder to\nproduce context-aware embeddings and a Siamese fusion technique to capture the\ninteractions between text and image. We perform an extensive experimentation on\nseven meme classification tasks across six datasets. We establish a new state\nof the art in Memotion7k with a 7.25% relative F1-score improvement, and\nachieve super-human performance on Harm-P with 13.73% F1-Score improvement. Our\napproach demonstrates the potential for compact meme classification models,\nenabling accurate and efficient meme monitoring. We share our code at\nhttps://github.com/jahuerta92/meme-classification-simclip","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CLIP-based siamese approach for meme classification\",\"authors\":\"Javier Huertas-Tato, Christos Koutlis, Symeon Papadopoulos, David Camacho, Ioannis Kompatsiaris\",\"doi\":\"arxiv-2409.05772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memes are an increasingly prevalent element of online discourse in social\\nnetworks, especially among young audiences. They carry ideas and messages that\\nrange from humorous to hateful, and are widely consumed. Their potentially high\\nimpact requires adequate means of control to moderate their use in large scale.\\nIn this work, we propose SimCLIP a deep learning-based architecture for\\ncross-modal understanding of memes, leveraging a pre-trained CLIP encoder to\\nproduce context-aware embeddings and a Siamese fusion technique to capture the\\ninteractions between text and image. We perform an extensive experimentation on\\nseven meme classification tasks across six datasets. We establish a new state\\nof the art in Memotion7k with a 7.25% relative F1-score improvement, and\\nachieve super-human performance on Harm-P with 13.73% F1-Score improvement. Our\\napproach demonstrates the potential for compact meme classification models,\\nenabling accurate and efficient meme monitoring. We share our code at\\nhttps://github.com/jahuerta92/meme-classification-simclip\",\"PeriodicalId\":501480,\"journal\":{\"name\":\"arXiv - CS - Multimedia\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在社交网络的在线讨论中,特别是在年轻受众中,"备忘录 "是一个越来越普遍的元素。它们承载着从幽默到仇恨的各种想法和信息,被广泛使用。在这项工作中,我们提出了 SimCLIP,这是一种基于深度学习的架构,利用预先训练的 CLIP 编码器生成上下文感知嵌入,并利用连体融合技术捕捉文本和图像之间的交互,从而实现对备忘录的跨模态理解。我们在六个数据集的七个meme分类任务上进行了广泛的实验。我们在 Memotion7k 中建立了新的技术水平,相对 F1 分数提高了 7.25%;在 Harm-P 中取得了超人的性能,F1 分数提高了 13.73%。我们的方法展示了紧凑型 meme 分类模型的潜力,可以实现准确、高效的 meme 监控。我们将在以下网址分享我们的代码:https://github.com/jahuerta92/meme-classification-simclip
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CLIP-based siamese approach for meme classification
Memes are an increasingly prevalent element of online discourse in social networks, especially among young audiences. They carry ideas and messages that range from humorous to hateful, and are widely consumed. Their potentially high impact requires adequate means of control to moderate their use in large scale. In this work, we propose SimCLIP a deep learning-based architecture for cross-modal understanding of memes, leveraging a pre-trained CLIP encoder to produce context-aware embeddings and a Siamese fusion technique to capture the interactions between text and image. We perform an extensive experimentation on seven meme classification tasks across six datasets. We establish a new state of the art in Memotion7k with a 7.25% relative F1-score improvement, and achieve super-human performance on Harm-P with 13.73% F1-Score improvement. Our approach demonstrates the potential for compact meme classification models, enabling accurate and efficient meme monitoring. We share our code at https://github.com/jahuerta92/meme-classification-simclip
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信