从过渡到暴跌波形的自力框架

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Lorenzo Küchler, Geoffrey Compère, Leanne Durkan, Adam Pound
{"title":"从过渡到暴跌波形的自力框架","authors":"Lorenzo Küchler, Geoffrey Compère, Leanne Durkan, Adam Pound","doi":"10.21468/scipostphys.17.2.056","DOIUrl":null,"url":null,"abstract":"Compact binaries with asymmetric mass ratios are key expected sources for next-generation gravitational wave detectors. Gravitational self-force theory has been successful in producing post-adiabatic waveforms that describe the quasi-circular inspiral around a non-spinning black hole with sub-radian accuracy, in remarkable agreement with numerical relativity simulations. Current inspiral models, however, break down at the innermost stable circular orbit, missing part of the waveform as the secondary body transitions to a plunge into the black hole. In this work we derive the transition-to-plunge expansion within a multiscale framework and asymptotically match its early-time behaviour with the late inspiral. Our multiscale formulation facilitates rapid generation of waveforms: we build second post-leading transition-to-plunge waveforms, named 2PLT waveforms. Although our numerical results are limited to low perturbative orders, our framework contains the analytic tools for building higher-order waveforms consistent with post-adiabatic inspirals, once all the necessary numerical self-force data becomes available. We validate our framework by comparing against numerical relativity simulations, surrogate models and the effective one-body approach.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"8 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-force framework for transition-to-plunge waveforms\",\"authors\":\"Lorenzo Küchler, Geoffrey Compère, Leanne Durkan, Adam Pound\",\"doi\":\"10.21468/scipostphys.17.2.056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compact binaries with asymmetric mass ratios are key expected sources for next-generation gravitational wave detectors. Gravitational self-force theory has been successful in producing post-adiabatic waveforms that describe the quasi-circular inspiral around a non-spinning black hole with sub-radian accuracy, in remarkable agreement with numerical relativity simulations. Current inspiral models, however, break down at the innermost stable circular orbit, missing part of the waveform as the secondary body transitions to a plunge into the black hole. In this work we derive the transition-to-plunge expansion within a multiscale framework and asymptotically match its early-time behaviour with the late inspiral. Our multiscale formulation facilitates rapid generation of waveforms: we build second post-leading transition-to-plunge waveforms, named 2PLT waveforms. Although our numerical results are limited to low perturbative orders, our framework contains the analytic tools for building higher-order waveforms consistent with post-adiabatic inspirals, once all the necessary numerical self-force data becomes available. We validate our framework by comparing against numerical relativity simulations, surrogate models and the effective one-body approach.\",\"PeriodicalId\":21682,\"journal\":{\"name\":\"SciPost Physics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SciPost Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.21468/scipostphys.17.2.056\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphys.17.2.056","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

质量比不对称的紧凑双星是下一代引力波探测器的主要预期来源。引力自力理论已经成功地产生了绝热后波形,以亚弧度精度描述了围绕非自转黑洞的准圆形吸积,与数值相对论模拟非常一致。然而,目前的吸积模型在最内层的稳定圆形轨道上就会崩溃,在次级天体过渡到坠入黑洞时会丢失部分波形。在这项工作中,我们在多尺度框架内推导出了从过渡到坠落的扩展,并将其早期时间行为与晚期吸气渐近匹配。我们的多尺度表述有利于快速生成波形:我们建立了第二个后引力过渡到暴跌波形,命名为 2PLT 波形。尽管我们的数值结果仅限于低微扰阶,但一旦获得所有必要的数值自力数据,我们的框架包含了建立与后绝热吸气一致的高阶波形的分析工具。我们通过与相对论数值模拟、代用模型和有效单体方法进行比较,验证了我们的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-force framework for transition-to-plunge waveforms
Compact binaries with asymmetric mass ratios are key expected sources for next-generation gravitational wave detectors. Gravitational self-force theory has been successful in producing post-adiabatic waveforms that describe the quasi-circular inspiral around a non-spinning black hole with sub-radian accuracy, in remarkable agreement with numerical relativity simulations. Current inspiral models, however, break down at the innermost stable circular orbit, missing part of the waveform as the secondary body transitions to a plunge into the black hole. In this work we derive the transition-to-plunge expansion within a multiscale framework and asymptotically match its early-time behaviour with the late inspiral. Our multiscale formulation facilitates rapid generation of waveforms: we build second post-leading transition-to-plunge waveforms, named 2PLT waveforms. Although our numerical results are limited to low perturbative orders, our framework contains the analytic tools for building higher-order waveforms consistent with post-adiabatic inspirals, once all the necessary numerical self-force data becomes available. We validate our framework by comparing against numerical relativity simulations, surrogate models and the effective one-body approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SciPost Physics
SciPost Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
8.20
自引率
12.70%
发文量
315
审稿时长
10 weeks
期刊介绍: SciPost Physics publishes breakthrough research articles in the whole field of Physics, covering Experimental, Theoretical and Computational approaches. Specialties covered by this Journal: - Atomic, Molecular and Optical Physics - Experiment - Atomic, Molecular and Optical Physics - Theory - Biophysics - Condensed Matter Physics - Experiment - Condensed Matter Physics - Theory - Condensed Matter Physics - Computational - Fluid Dynamics - Gravitation, Cosmology and Astroparticle Physics - High-Energy Physics - Experiment - High-Energy Physics - Theory - High-Energy Physics - Phenomenology - Mathematical Physics - Nuclear Physics - Experiment - Nuclear Physics - Theory - Quantum Physics - Statistical and Soft Matter Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信