{"title":"生命物理学理论的雄心壮志","authors":"William Bialek","doi":"10.21468/scipostphyslectnotes.84","DOIUrl":null,"url":null,"abstract":"Theoretical physicists have been fascinated by the phenomena of life for more than a century. As we engage with more realistic descriptions of living systems, however, things get complicated. After reviewing different reactions to this complexity, I explore the optimization of information flow as a potentially general theoretical principle. The primary example is a genetic network guiding development of the fly embryo, but each idea also is illustrated by examples from neural systems. In each case, optimization makes detailed, largely parameter-free predictions that connect quantitatively with experiment.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"33 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ambitions for theory in the physics of life\",\"authors\":\"William Bialek\",\"doi\":\"10.21468/scipostphyslectnotes.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theoretical physicists have been fascinated by the phenomena of life for more than a century. As we engage with more realistic descriptions of living systems, however, things get complicated. After reviewing different reactions to this complexity, I explore the optimization of information flow as a potentially general theoretical principle. The primary example is a genetic network guiding development of the fly embryo, but each idea also is illustrated by examples from neural systems. In each case, optimization makes detailed, largely parameter-free predictions that connect quantitatively with experiment.\",\"PeriodicalId\":21682,\"journal\":{\"name\":\"SciPost Physics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SciPost Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.21468/scipostphyslectnotes.84\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphyslectnotes.84","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Theoretical physicists have been fascinated by the phenomena of life for more than a century. As we engage with more realistic descriptions of living systems, however, things get complicated. After reviewing different reactions to this complexity, I explore the optimization of information flow as a potentially general theoretical principle. The primary example is a genetic network guiding development of the fly embryo, but each idea also is illustrated by examples from neural systems. In each case, optimization makes detailed, largely parameter-free predictions that connect quantitatively with experiment.