异常、表征和自我监督

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Barry M. Dillon, Luigi Favaro, Friedrich Feiden, Tanmoy Modak, Tilman Plehn
{"title":"异常、表征和自我监督","authors":"Barry M. Dillon, Luigi Favaro, Friedrich Feiden, Tanmoy Modak, Tilman Plehn","doi":"10.21468/scipostphyscore.7.3.056","DOIUrl":null,"url":null,"abstract":"We develop a self-supervised method for density-based anomaly detection using contrastive learning, and test it using event-level anomaly data from CMS ADC2021. The AnomalyCLR technique is data-driven and uses augmentations of the background data to mimic non-Standard-Model events in a model-agnostic way. It uses a permutation-invariant Transformer Encoder architecture to map the objects measured in a collider event to the representation space, where the data augmentations define a representation space which is sensitive to potential anomalous features. An AutoEncoder trained on background representations then computes anomaly scores for a variety of signals in the representation space. With AnomalyCLR we find significant improvements on performance metrics for all signals when compared to the raw data baseline.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"27 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomalies, representations, and self-supervision\",\"authors\":\"Barry M. Dillon, Luigi Favaro, Friedrich Feiden, Tanmoy Modak, Tilman Plehn\",\"doi\":\"10.21468/scipostphyscore.7.3.056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a self-supervised method for density-based anomaly detection using contrastive learning, and test it using event-level anomaly data from CMS ADC2021. The AnomalyCLR technique is data-driven and uses augmentations of the background data to mimic non-Standard-Model events in a model-agnostic way. It uses a permutation-invariant Transformer Encoder architecture to map the objects measured in a collider event to the representation space, where the data augmentations define a representation space which is sensitive to potential anomalous features. An AutoEncoder trained on background representations then computes anomaly scores for a variety of signals in the representation space. With AnomalyCLR we find significant improvements on performance metrics for all signals when compared to the raw data baseline.\",\"PeriodicalId\":21682,\"journal\":{\"name\":\"SciPost Physics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SciPost Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.21468/scipostphyscore.7.3.056\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphyscore.7.3.056","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们利用对比学习开发了一种基于密度的自监督异常检测方法,并使用 CMS ADC2021 的事件级异常数据对其进行了测试。AnomalyCLR 技术由数据驱动,利用背景数据的增强,以模型无关的方式模拟非标准模型事件。它使用包换不变变换编码器架构,将对撞机事件中测量到的对象映射到表示空间,其中数据增强定义了对潜在异常特征敏感的表示空间。然后,根据背景表示训练的自动编码器会计算表示空间中各种信号的异常分数。通过 AnomalyCLR,我们发现与原始数据基线相比,所有信号的性能指标都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomalies, representations, and self-supervision
We develop a self-supervised method for density-based anomaly detection using contrastive learning, and test it using event-level anomaly data from CMS ADC2021. The AnomalyCLR technique is data-driven and uses augmentations of the background data to mimic non-Standard-Model events in a model-agnostic way. It uses a permutation-invariant Transformer Encoder architecture to map the objects measured in a collider event to the representation space, where the data augmentations define a representation space which is sensitive to potential anomalous features. An AutoEncoder trained on background representations then computes anomaly scores for a variety of signals in the representation space. With AnomalyCLR we find significant improvements on performance metrics for all signals when compared to the raw data baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SciPost Physics
SciPost Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
8.20
自引率
12.70%
发文量
315
审稿时长
10 weeks
期刊介绍: SciPost Physics publishes breakthrough research articles in the whole field of Physics, covering Experimental, Theoretical and Computational approaches. Specialties covered by this Journal: - Atomic, Molecular and Optical Physics - Experiment - Atomic, Molecular and Optical Physics - Theory - Biophysics - Condensed Matter Physics - Experiment - Condensed Matter Physics - Theory - Condensed Matter Physics - Computational - Fluid Dynamics - Gravitation, Cosmology and Astroparticle Physics - High-Energy Physics - Experiment - High-Energy Physics - Theory - High-Energy Physics - Phenomenology - Mathematical Physics - Nuclear Physics - Experiment - Nuclear Physics - Theory - Quantum Physics - Statistical and Soft Matter Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信