3d $\mathcal{N}=4$ rank-0 SCFT 的边界顶点代数

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Andrea E. V. Ferrari, Niklas Garner, Heeyeon Kim
{"title":"3d $\\mathcal{N}=4$ rank-0 SCFT 的边界顶点代数","authors":"Andrea E. V. Ferrari, Niklas Garner, Heeyeon Kim","doi":"10.21468/scipostphys.17.2.057","DOIUrl":null,"url":null,"abstract":"We initiate the study of boundary Vertex Operator Algebras (VOAs) of topologically twisted 3d $\\mathcal{N}=4$ rank-0 SCFTs. This is a recently introduced class of $\\mathcal{N}=4$ SCFTs that by definition have zero-dimensional Higgs and Coulomb branches. We briefly explain why it is reasonable to obtain rational VOAs at the boundary of their topological twists. When a rank-0 SCFT is realized as the IR fixed point of a $\\mathcal{N}=2$ Lagrangian theory, we propose a technique for the explicit construction of its topological twists and boundary VOAs based on deformations of the holomorphic-topological twist of the $\\mathcal{N}=2$ microscopic description. We apply this technique to the $B$ twist of a newly discovered family of 3d $\\mathcal{N}=4$ rank-0 SCFTs ${\\mathcal T}_r$ and argue that they admit the simple affine VOAs $L_r(\\mathfrak{osp}(1|2))$ at their boundary. In the simplest case, this leads to a novel level-rank duality between $L_1(\\mathfrak{osp}(1|2))$ and the minimal model $M(2,5)$. As an aside, we present a TQFT obtained by twisting a 3d $\\mathcal{N}=2$ QFT that admits the $M(3,4)$ minimal model as a boundary VOA and briefly comment on the classical freeness of VOAs at the boundary of 3d TQFTs.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"38 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary vertex algebras for 3d $\\\\mathcal{N}=4$ rank-0 SCFTs\",\"authors\":\"Andrea E. V. Ferrari, Niklas Garner, Heeyeon Kim\",\"doi\":\"10.21468/scipostphys.17.2.057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We initiate the study of boundary Vertex Operator Algebras (VOAs) of topologically twisted 3d $\\\\mathcal{N}=4$ rank-0 SCFTs. This is a recently introduced class of $\\\\mathcal{N}=4$ SCFTs that by definition have zero-dimensional Higgs and Coulomb branches. We briefly explain why it is reasonable to obtain rational VOAs at the boundary of their topological twists. When a rank-0 SCFT is realized as the IR fixed point of a $\\\\mathcal{N}=2$ Lagrangian theory, we propose a technique for the explicit construction of its topological twists and boundary VOAs based on deformations of the holomorphic-topological twist of the $\\\\mathcal{N}=2$ microscopic description. We apply this technique to the $B$ twist of a newly discovered family of 3d $\\\\mathcal{N}=4$ rank-0 SCFTs ${\\\\mathcal T}_r$ and argue that they admit the simple affine VOAs $L_r(\\\\mathfrak{osp}(1|2))$ at their boundary. In the simplest case, this leads to a novel level-rank duality between $L_1(\\\\mathfrak{osp}(1|2))$ and the minimal model $M(2,5)$. As an aside, we present a TQFT obtained by twisting a 3d $\\\\mathcal{N}=2$ QFT that admits the $M(3,4)$ minimal model as a boundary VOA and briefly comment on the classical freeness of VOAs at the boundary of 3d TQFTs.\",\"PeriodicalId\":21682,\"journal\":{\"name\":\"SciPost Physics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SciPost Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.21468/scipostphys.17.2.057\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphys.17.2.057","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们开始研究拓扑扭曲的3d $\mathcal{N}=4$ rank-0 SCFTs的边界顶点算子代数(VOAs)。这是最近引入的一类$\mathcal{N}=4$ SCFTs,根据定义,它有零维希格斯分支和库仑分支。我们简要解释了为什么在其拓扑扭转边界获得合理的VOA是合理的。当0秩SCFT作为$\mathcal{N}=2$ 拉格朗日理论的红外定点实现时,我们提出了一种基于$\mathcal{N}=2$ 微观描述的全形拓扑扭转的变形来明确构造其拓扑扭转和边界VOA的技术。我们将这一技术应用于新发现的3d $\mathcal{N}=4$ 0秩SCFTs ${mathcal T}_r$族的$B$扭转,并论证它们在边界上承认简单仿射VOAs $L_r(\mathfrak{osp}(1|2))$。在最简单的情况下,这导致了 $L_1(\mathfrak{osp}(1|2))$ 与最小模型 $M(2,5)$ 之间新颖的等级对偶性。顺便提一下,我们提出了一个由 3d $\mathcal{N}=2$ QFT 扭转得到的 TQFT,它接纳了作为边界 VOA 的 $M(3,4)$ 最小模型,并简要评述了 3d TQFT 边界上 VOA 的经典自由性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary vertex algebras for 3d $\mathcal{N}=4$ rank-0 SCFTs
We initiate the study of boundary Vertex Operator Algebras (VOAs) of topologically twisted 3d $\mathcal{N}=4$ rank-0 SCFTs. This is a recently introduced class of $\mathcal{N}=4$ SCFTs that by definition have zero-dimensional Higgs and Coulomb branches. We briefly explain why it is reasonable to obtain rational VOAs at the boundary of their topological twists. When a rank-0 SCFT is realized as the IR fixed point of a $\mathcal{N}=2$ Lagrangian theory, we propose a technique for the explicit construction of its topological twists and boundary VOAs based on deformations of the holomorphic-topological twist of the $\mathcal{N}=2$ microscopic description. We apply this technique to the $B$ twist of a newly discovered family of 3d $\mathcal{N}=4$ rank-0 SCFTs ${\mathcal T}_r$ and argue that they admit the simple affine VOAs $L_r(\mathfrak{osp}(1|2))$ at their boundary. In the simplest case, this leads to a novel level-rank duality between $L_1(\mathfrak{osp}(1|2))$ and the minimal model $M(2,5)$. As an aside, we present a TQFT obtained by twisting a 3d $\mathcal{N}=2$ QFT that admits the $M(3,4)$ minimal model as a boundary VOA and briefly comment on the classical freeness of VOAs at the boundary of 3d TQFTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SciPost Physics
SciPost Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
8.20
自引率
12.70%
发文量
315
审稿时长
10 weeks
期刊介绍: SciPost Physics publishes breakthrough research articles in the whole field of Physics, covering Experimental, Theoretical and Computational approaches. Specialties covered by this Journal: - Atomic, Molecular and Optical Physics - Experiment - Atomic, Molecular and Optical Physics - Theory - Biophysics - Condensed Matter Physics - Experiment - Condensed Matter Physics - Theory - Condensed Matter Physics - Computational - Fluid Dynamics - Gravitation, Cosmology and Astroparticle Physics - High-Energy Physics - Experiment - High-Energy Physics - Theory - High-Energy Physics - Phenomenology - Mathematical Physics - Nuclear Physics - Experiment - Nuclear Physics - Theory - Quantum Physics - Statistical and Soft Matter Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信