{"title":"一阶量子超导体-绝缘体转变的均场理论","authors":"Igor Poboiko, Mikhail V. Feigel'man","doi":"10.21468/scipostphys.17.2.066","DOIUrl":null,"url":null,"abstract":"Recent experimental studies on strongly disordered indium oxide films have revealed an unusual first-order quantum phase transition between the superconducting and insulating states (SIT). This transition is characterized by a discontinuous jump from non-zero to zero values of superfluid stiffness at the critical point, contradicting the conventional \"scaling scenario\" typically associated with SIT. In this paper, we present a theoretical framework for understanding this first-order transition. Our approach is based on the concept of competition between two fundamentally distinct ground states that arise from electron pairs initially localized by strong disorder: the superconducting state and the Coulomb glass insulator. These ground states are distinguished by two crucially different order parameters, suggesting a natural expectation of a discontinuous transition between them at $T=0$. This transition occurs when the magnitudes of the superconducting gap $\\Delta$ and the Coulomb gap $E_C$ become comparable. Additionally, we extend our analysis to low non-zero temperatures and provide a mean-field \"phase diagram\" in the plane of $(T/\\Delta,E_C/\\Delta)$. Our results reveal the existence of a natural upper bound for the kinetic inductance of strongly disordered superconductors.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"59 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean-field theory of first-order quantum superconductor-insulator transition\",\"authors\":\"Igor Poboiko, Mikhail V. Feigel'man\",\"doi\":\"10.21468/scipostphys.17.2.066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent experimental studies on strongly disordered indium oxide films have revealed an unusual first-order quantum phase transition between the superconducting and insulating states (SIT). This transition is characterized by a discontinuous jump from non-zero to zero values of superfluid stiffness at the critical point, contradicting the conventional \\\"scaling scenario\\\" typically associated with SIT. In this paper, we present a theoretical framework for understanding this first-order transition. Our approach is based on the concept of competition between two fundamentally distinct ground states that arise from electron pairs initially localized by strong disorder: the superconducting state and the Coulomb glass insulator. These ground states are distinguished by two crucially different order parameters, suggesting a natural expectation of a discontinuous transition between them at $T=0$. This transition occurs when the magnitudes of the superconducting gap $\\\\Delta$ and the Coulomb gap $E_C$ become comparable. Additionally, we extend our analysis to low non-zero temperatures and provide a mean-field \\\"phase diagram\\\" in the plane of $(T/\\\\Delta,E_C/\\\\Delta)$. Our results reveal the existence of a natural upper bound for the kinetic inductance of strongly disordered superconductors.\",\"PeriodicalId\":21682,\"journal\":{\"name\":\"SciPost Physics\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SciPost Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.21468/scipostphys.17.2.066\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphys.17.2.066","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Mean-field theory of first-order quantum superconductor-insulator transition
Recent experimental studies on strongly disordered indium oxide films have revealed an unusual first-order quantum phase transition between the superconducting and insulating states (SIT). This transition is characterized by a discontinuous jump from non-zero to zero values of superfluid stiffness at the critical point, contradicting the conventional "scaling scenario" typically associated with SIT. In this paper, we present a theoretical framework for understanding this first-order transition. Our approach is based on the concept of competition between two fundamentally distinct ground states that arise from electron pairs initially localized by strong disorder: the superconducting state and the Coulomb glass insulator. These ground states are distinguished by two crucially different order parameters, suggesting a natural expectation of a discontinuous transition between them at $T=0$. This transition occurs when the magnitudes of the superconducting gap $\Delta$ and the Coulomb gap $E_C$ become comparable. Additionally, we extend our analysis to low non-zero temperatures and provide a mean-field "phase diagram" in the plane of $(T/\Delta,E_C/\Delta)$. Our results reveal the existence of a natural upper bound for the kinetic inductance of strongly disordered superconductors.