{"title":"2+1$ 维的边界条件和反射异常","authors":"Jiunn-Wei Chen, Chang-Tse Hsieh, Ryutaro Matsudo","doi":"10.21468/scipostphys.17.2.068","DOIUrl":null,"url":null,"abstract":"It is known that the $2+1$d single Majorana fermion theory has an anomaly of the reflection, which is canceled out when 16 copies of the theory are combined. Therefore, it is expected that the reflection symmetric boundary condition is impossible for one Majorana fermion, but possible for 16 Majorana fermions. In this paper, we consider a reflection symmetric boundary condition that varies at a single point, and find that there is a problem with one Majorana fermion. The problem is the absence of a corresponding outgoing wave to a specific incoming wave into the boundary, which leads to the non-conservation of the energy. For 16 Majorana fermions, it is possible to connect every incoming wave to an outgoing wave without breaking the reflection symmetry. In addition, we discuss the connection with the fermion-monopole scattering in $3+1$ dimensions.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"23 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary condition and reflection anomaly in $2+1$ dimensions\",\"authors\":\"Jiunn-Wei Chen, Chang-Tse Hsieh, Ryutaro Matsudo\",\"doi\":\"10.21468/scipostphys.17.2.068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that the $2+1$d single Majorana fermion theory has an anomaly of the reflection, which is canceled out when 16 copies of the theory are combined. Therefore, it is expected that the reflection symmetric boundary condition is impossible for one Majorana fermion, but possible for 16 Majorana fermions. In this paper, we consider a reflection symmetric boundary condition that varies at a single point, and find that there is a problem with one Majorana fermion. The problem is the absence of a corresponding outgoing wave to a specific incoming wave into the boundary, which leads to the non-conservation of the energy. For 16 Majorana fermions, it is possible to connect every incoming wave to an outgoing wave without breaking the reflection symmetry. In addition, we discuss the connection with the fermion-monopole scattering in $3+1$ dimensions.\",\"PeriodicalId\":21682,\"journal\":{\"name\":\"SciPost Physics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SciPost Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.21468/scipostphys.17.2.068\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphys.17.2.068","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Boundary condition and reflection anomaly in $2+1$ dimensions
It is known that the $2+1$d single Majorana fermion theory has an anomaly of the reflection, which is canceled out when 16 copies of the theory are combined. Therefore, it is expected that the reflection symmetric boundary condition is impossible for one Majorana fermion, but possible for 16 Majorana fermions. In this paper, we consider a reflection symmetric boundary condition that varies at a single point, and find that there is a problem with one Majorana fermion. The problem is the absence of a corresponding outgoing wave to a specific incoming wave into the boundary, which leads to the non-conservation of the energy. For 16 Majorana fermions, it is possible to connect every incoming wave to an outgoing wave without breaking the reflection symmetry. In addition, we discuss the connection with the fermion-monopole scattering in $3+1$ dimensions.