Matteo Caldara, Andrea Richaud, Massimo Capone, Pietro Massignan
{"title":"大质量涡核、摩擦和约束对超流体开尔文-赫尔姆霍兹不稳定性的抑制","authors":"Matteo Caldara, Andrea Richaud, Massimo Capone, Pietro Massignan","doi":"10.21468/scipostphys.17.3.076","DOIUrl":null,"url":null,"abstract":"We characterize the dynamical instability responsible for the breakdown of regular rows and necklaces of quantized vortices that appear at the interface between two superfluids in relative motion. Making use of a generalized point-vortex model, we identify several mechanisms leading to the suppression of this instability. They include a non-zero mass of the vortex cores, dissipative processes resulting from the interaction between the vortices and the excitations of the superfluid, and the proximity of the vortex array to the sample boundaries. We show that massive vortex cores not only have a mitigating effect on the dynamical instability, but also change the associated scaling law and affect the direction along which it develops. The predictions of our massive and dissipative point-vortex model are eventually compared against recent experimental measurements of the maximum instability growth rate relevant to vortex necklaces in a cold-atom platform.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"160 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of the superfluid Kelvin-Helmholtz instability due to massive vortex cores, friction and confinement\",\"authors\":\"Matteo Caldara, Andrea Richaud, Massimo Capone, Pietro Massignan\",\"doi\":\"10.21468/scipostphys.17.3.076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize the dynamical instability responsible for the breakdown of regular rows and necklaces of quantized vortices that appear at the interface between two superfluids in relative motion. Making use of a generalized point-vortex model, we identify several mechanisms leading to the suppression of this instability. They include a non-zero mass of the vortex cores, dissipative processes resulting from the interaction between the vortices and the excitations of the superfluid, and the proximity of the vortex array to the sample boundaries. We show that massive vortex cores not only have a mitigating effect on the dynamical instability, but also change the associated scaling law and affect the direction along which it develops. The predictions of our massive and dissipative point-vortex model are eventually compared against recent experimental measurements of the maximum instability growth rate relevant to vortex necklaces in a cold-atom platform.\",\"PeriodicalId\":21682,\"journal\":{\"name\":\"SciPost Physics\",\"volume\":\"160 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SciPost Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.21468/scipostphys.17.3.076\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphys.17.3.076","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Suppression of the superfluid Kelvin-Helmholtz instability due to massive vortex cores, friction and confinement
We characterize the dynamical instability responsible for the breakdown of regular rows and necklaces of quantized vortices that appear at the interface between two superfluids in relative motion. Making use of a generalized point-vortex model, we identify several mechanisms leading to the suppression of this instability. They include a non-zero mass of the vortex cores, dissipative processes resulting from the interaction between the vortices and the excitations of the superfluid, and the proximity of the vortex array to the sample boundaries. We show that massive vortex cores not only have a mitigating effect on the dynamical instability, but also change the associated scaling law and affect the direction along which it develops. The predictions of our massive and dissipative point-vortex model are eventually compared against recent experimental measurements of the maximum instability growth rate relevant to vortex necklaces in a cold-atom platform.