J Barode, E Bassini, A Aversa, D Manfredi, D Ugues, S Biamino, M Lombardi, P Fino
{"title":"热等静压对激光粉末床熔化 A20XTM 合金微观结构的影响","authors":"J Barode, E Bassini, A Aversa, D Manfredi, D Ugues, S Biamino, M Lombardi, P Fino","doi":"10.1088/1757-899x/1310/1/012026","DOIUrl":null,"url":null,"abstract":"In the present work, an attempt has been made to do a combined hot isostatic pressing (HIP) & solution treatment in a single-step and the effect of different cooling rates (quenching and annealing) on the microstructure was examined. For a comparison, solution treatment (without HIP) was also analysed. It was observed that HIP treatment was successful in reducing the macro-porosities of the L-PBF part. Although, it was not an efficient treatment for the dissolution of the θ-Al<sub>2</sub>Cu phase. Furthermore, in both HIP-Quenched and HIP-Annealed treatments a sign of incipient melting was observed along the grain boundaries. Solution treatment without HIP did not show incipient melting.","PeriodicalId":14483,"journal":{"name":"IOP Conference Series: Materials Science and Engineering","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of hot isostatic pressing on the microstructure of laser powder bed fused A20XTM alloy\",\"authors\":\"J Barode, E Bassini, A Aversa, D Manfredi, D Ugues, S Biamino, M Lombardi, P Fino\",\"doi\":\"10.1088/1757-899x/1310/1/012026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, an attempt has been made to do a combined hot isostatic pressing (HIP) & solution treatment in a single-step and the effect of different cooling rates (quenching and annealing) on the microstructure was examined. For a comparison, solution treatment (without HIP) was also analysed. It was observed that HIP treatment was successful in reducing the macro-porosities of the L-PBF part. Although, it was not an efficient treatment for the dissolution of the θ-Al<sub>2</sub>Cu phase. Furthermore, in both HIP-Quenched and HIP-Annealed treatments a sign of incipient melting was observed along the grain boundaries. Solution treatment without HIP did not show incipient melting.\",\"PeriodicalId\":14483,\"journal\":{\"name\":\"IOP Conference Series: Materials Science and Engineering\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP Conference Series: Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1757-899x/1310/1/012026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899x/1310/1/012026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究尝试将热等静压(HIP)和固溶处理结合在一起,并研究了不同冷却速度(淬火和退火)对微观结构的影响。为了进行比较,还分析了固溶处理(无 HIP)。据观察,HIP 处理成功地降低了 L-PBF 零件的宏观孔隙率。不过,这种处理方法并不能有效地溶解 θ-Al2Cu 相。此外,在 HIP 淬火和 HIP 退火处理中,沿晶界都观察到了萌芽熔化的迹象。未进行 HIP 的固溶处理则未出现萌芽熔化现象。
Effect of hot isostatic pressing on the microstructure of laser powder bed fused A20XTM alloy
In the present work, an attempt has been made to do a combined hot isostatic pressing (HIP) & solution treatment in a single-step and the effect of different cooling rates (quenching and annealing) on the microstructure was examined. For a comparison, solution treatment (without HIP) was also analysed. It was observed that HIP treatment was successful in reducing the macro-porosities of the L-PBF part. Although, it was not an efficient treatment for the dissolution of the θ-Al2Cu phase. Furthermore, in both HIP-Quenched and HIP-Annealed treatments a sign of incipient melting was observed along the grain boundaries. Solution treatment without HIP did not show incipient melting.