简单仿射VOA $L_k(sl_3)$和$W$-代数$W_k(sl_3,f)$的关联品种

Cuipo Jiang, Jingtian Song
{"title":"简单仿射VOA $L_k(sl_3)$和$W$-代数$W_k(sl_3,f)$的关联品种","authors":"Cuipo Jiang, Jingtian Song","doi":"arxiv-2409.03552","DOIUrl":null,"url":null,"abstract":"In this paper we first prove that the maximal ideal of the universal affine\nvertex operator algebra $V^k(sl_n)$ for $k=-n+\\frac{n-1}{q}$ is generated by\ntwo singular vectors of conformal weight $3q$ if $n=3$, and by one singular\nvector of conformal weight $2q$ if $n\\geq 4$. We next determine the associated\nvarieties of the simple vertex operator algebras $L_k(sl_3)$ for all the\nnon-admissible levels $k=-3+\\frac{2}{2m+1}$, $m\\geq 0$. The varieties of the\nassociated simple affine $W$-algebras $W_k(sl_3,f)$, for nilpotent elements $f$\nof $sl_3$, are also determined.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Associated varieties of simple affine VOAs $L_k(sl_3)$ and $W$-algebras $W_k(sl_3,f)$\",\"authors\":\"Cuipo Jiang, Jingtian Song\",\"doi\":\"arxiv-2409.03552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we first prove that the maximal ideal of the universal affine\\nvertex operator algebra $V^k(sl_n)$ for $k=-n+\\\\frac{n-1}{q}$ is generated by\\ntwo singular vectors of conformal weight $3q$ if $n=3$, and by one singular\\nvector of conformal weight $2q$ if $n\\\\geq 4$. We next determine the associated\\nvarieties of the simple vertex operator algebras $L_k(sl_3)$ for all the\\nnon-admissible levels $k=-3+\\\\frac{2}{2m+1}$, $m\\\\geq 0$. The varieties of the\\nassociated simple affine $W$-algebras $W_k(sl_3,f)$, for nilpotent elements $f$\\nof $sl_3$, are also determined.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先证明了对于 $k=-n+\frac{n-1}{q}$,通用顶点算子代数 $V^k(sl_n)$ 的最大理想由两个共形权重为 3q$ 的奇异向量生成(如果 $n=3$ ),以及由一个共形权重为 2q$ 的奇异向量生成(如果 $ngeq 4$ )。接下来,我们确定了简单顶点算子代数$L_k(sl_3)$的关联变量,这些变量适用于所有非容许级$k=-3+\frac{2}{2m+1}$,$mgeq 0$。此外,还确定了与之相关的简单仿射 $W$-gebras $W_k(sl_3,f)$,对于 $sl_3$ 的零势元素 $f$ 的种类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Associated varieties of simple affine VOAs $L_k(sl_3)$ and $W$-algebras $W_k(sl_3,f)$
In this paper we first prove that the maximal ideal of the universal affine vertex operator algebra $V^k(sl_n)$ for $k=-n+\frac{n-1}{q}$ is generated by two singular vectors of conformal weight $3q$ if $n=3$, and by one singular vector of conformal weight $2q$ if $n\geq 4$. We next determine the associated varieties of the simple vertex operator algebras $L_k(sl_3)$ for all the non-admissible levels $k=-3+\frac{2}{2m+1}$, $m\geq 0$. The varieties of the associated simple affine $W$-algebras $W_k(sl_3,f)$, for nilpotent elements $f$ of $sl_3$, are also determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信