{"title":"后向步骤:利用耦合库 preCICE 从流体流动到共轭传热","authors":"C G Caccia, M Corti, A Della Torre, P Masarati","doi":"10.1088/1757-899x/1312/1/012007","DOIUrl":null,"url":null,"abstract":"The Backward Facing Step geometry is a widely used benchmark problem in Computational Fluid Dynamics literature that is exploitable to validate models, solution methods, and software implementations. Despite a simple geometry, it shows phenomena like separation, reattachment, and re-circulation zones, under different flow conditions (i.e. different Reynolds number or turbulence parameters) it gives different measurable results, suitable for benchmarking activities [1]. Also regarding heat transfer analysis, the backward facing step can be used to investigate a wide variety of operating conditions (both for simple heat transfer cases and coupling heat transfer between the fluid region and a neighboring solid region giving rise to a more complex conjugate heat transfer model) [2]. This work uses the backward facing step as a test case to validate a numerical model built with the open-source Software OpenFOAM 10. The fluid and solid subdomains are connected through the open-source coupling library preCICE [3]. The results, taken from simulations carried out by the authors, show good agreement with the data available in the literature.","PeriodicalId":14483,"journal":{"name":"IOP Conference Series: Materials Science and Engineering","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backward facing step: from fluid flow to conjugate heat transfer with the coupling library preCICE\",\"authors\":\"C G Caccia, M Corti, A Della Torre, P Masarati\",\"doi\":\"10.1088/1757-899x/1312/1/012007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Backward Facing Step geometry is a widely used benchmark problem in Computational Fluid Dynamics literature that is exploitable to validate models, solution methods, and software implementations. Despite a simple geometry, it shows phenomena like separation, reattachment, and re-circulation zones, under different flow conditions (i.e. different Reynolds number or turbulence parameters) it gives different measurable results, suitable for benchmarking activities [1]. Also regarding heat transfer analysis, the backward facing step can be used to investigate a wide variety of operating conditions (both for simple heat transfer cases and coupling heat transfer between the fluid region and a neighboring solid region giving rise to a more complex conjugate heat transfer model) [2]. This work uses the backward facing step as a test case to validate a numerical model built with the open-source Software OpenFOAM 10. The fluid and solid subdomains are connected through the open-source coupling library preCICE [3]. The results, taken from simulations carried out by the authors, show good agreement with the data available in the literature.\",\"PeriodicalId\":14483,\"journal\":{\"name\":\"IOP Conference Series: Materials Science and Engineering\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP Conference Series: Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1757-899x/1312/1/012007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899x/1312/1/012007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Backward facing step: from fluid flow to conjugate heat transfer with the coupling library preCICE
The Backward Facing Step geometry is a widely used benchmark problem in Computational Fluid Dynamics literature that is exploitable to validate models, solution methods, and software implementations. Despite a simple geometry, it shows phenomena like separation, reattachment, and re-circulation zones, under different flow conditions (i.e. different Reynolds number or turbulence parameters) it gives different measurable results, suitable for benchmarking activities [1]. Also regarding heat transfer analysis, the backward facing step can be used to investigate a wide variety of operating conditions (both for simple heat transfer cases and coupling heat transfer between the fluid region and a neighboring solid region giving rise to a more complex conjugate heat transfer model) [2]. This work uses the backward facing step as a test case to validate a numerical model built with the open-source Software OpenFOAM 10. The fluid and solid subdomains are connected through the open-source coupling library preCICE [3]. The results, taken from simulations carried out by the authors, show good agreement with the data available in the literature.