论阿诺索夫表征的特征多样性

Krishnendu Gongopadhyay, Tathagata Nayak
{"title":"论阿诺索夫表征的特征多样性","authors":"Krishnendu Gongopadhyay, Tathagata Nayak","doi":"arxiv-2409.07316","DOIUrl":null,"url":null,"abstract":"Let $\\Gamma$ be the free group $F_n$ of $n$ generators, resp. the fundamental\ngroup $\\pi_1(\\Sigma_g)$ of a closed, connnected, orientatble surface of genus\n$g \\geq 2$. We show that the charater variety of irreducible, resp. Zariski\ndense, Anosov representations of $\\Gamma$ into $\\SL(n, \\C)$ is a complex\nmanifold of (complex) dimension $(n-1)(n^2-1)$, resp. $(2g-2) (n^2-1)$. For\n$\\Gamma=\\pi_1(\\Sigma_g)$, we also show that these character varieties are\nholomorphic symplectic manifolds.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Character Variety of Anosov Representations\",\"authors\":\"Krishnendu Gongopadhyay, Tathagata Nayak\",\"doi\":\"arxiv-2409.07316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\Gamma$ be the free group $F_n$ of $n$ generators, resp. the fundamental\\ngroup $\\\\pi_1(\\\\Sigma_g)$ of a closed, connnected, orientatble surface of genus\\n$g \\\\geq 2$. We show that the charater variety of irreducible, resp. Zariski\\ndense, Anosov representations of $\\\\Gamma$ into $\\\\SL(n, \\\\C)$ is a complex\\nmanifold of (complex) dimension $(n-1)(n^2-1)$, resp. $(2g-2) (n^2-1)$. For\\n$\\\\Gamma=\\\\pi_1(\\\\Sigma_g)$, we also show that these character varieties are\\nholomorphic symplectic manifolds.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $\Gamma$ 是由 $n$ 个子组成的自由群 $F_n$,或者说是一个封闭的、连通的、可定向的、属$g \geq 2$ 的表面的基群 $/pi_1(\Sigma_g)$。我们证明了$\Gamma$的不可还原的(或扎里斯基登斯的)阿诺索夫表示进入$\SL(n, \C)$的charater variety是一个(复)维$(n-1)(n^2-1)$,或$(2g-2)(n^2-1)$的复曲面。对于$\Gamma=\pi_1(\Sigma_g)$,我们还证明了这些特征变体是全形交折流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Character Variety of Anosov Representations
Let $\Gamma$ be the free group $F_n$ of $n$ generators, resp. the fundamental group $\pi_1(\Sigma_g)$ of a closed, connnected, orientatble surface of genus $g \geq 2$. We show that the charater variety of irreducible, resp. Zariski dense, Anosov representations of $\Gamma$ into $\SL(n, \C)$ is a complex manifold of (complex) dimension $(n-1)(n^2-1)$, resp. $(2g-2) (n^2-1)$. For $\Gamma=\pi_1(\Sigma_g)$, we also show that these character varieties are holomorphic symplectic manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信