几何爱森斯坦数列 I:有限性定理

Linus Hamann, David Hansen, Peter Scholze
{"title":"几何爱森斯坦数列 I:有限性定理","authors":"Linus Hamann, David Hansen, Peter Scholze","doi":"arxiv-2409.07363","DOIUrl":null,"url":null,"abstract":"We develop the theory of geometric Eisenstein series and constant term\nfunctors for $\\ell$-adic sheaves on stacks of bundles on the Fargues-Fontaine\ncurve. In particular, we prove essentially optimal finiteness theorems for\nthese functors, analogous to the usual finiteness properties of parabolic\ninductions and Jacquet modules. We also prove a geometric form of Bernstein's\nsecond adjointness theorem, generalizing the classical result and its recent\nextension to more general coefficient rings proved in\n[Dat-Helm-Kurinczuk-Moss]. As applications, we decompose the category of\nsheaves on $\\mathrm{Bun}_G$ into cuspidal and Eisenstein parts, and show that\nthe gluing functors between strata of $\\mathrm{Bun}_G$ are continuous in a very\nstrong sense.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Eisenstein series I: finiteness theorems\",\"authors\":\"Linus Hamann, David Hansen, Peter Scholze\",\"doi\":\"arxiv-2409.07363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop the theory of geometric Eisenstein series and constant term\\nfunctors for $\\\\ell$-adic sheaves on stacks of bundles on the Fargues-Fontaine\\ncurve. In particular, we prove essentially optimal finiteness theorems for\\nthese functors, analogous to the usual finiteness properties of parabolic\\ninductions and Jacquet modules. We also prove a geometric form of Bernstein's\\nsecond adjointness theorem, generalizing the classical result and its recent\\nextension to more general coefficient rings proved in\\n[Dat-Helm-Kurinczuk-Moss]. As applications, we decompose the category of\\nsheaves on $\\\\mathrm{Bun}_G$ into cuspidal and Eisenstein parts, and show that\\nthe gluing functors between strata of $\\\\mathrm{Bun}_G$ are continuous in a very\\nstrong sense.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们发展了几何爱森斯坦级数和 $\ell$-adic sheaves on stacks of bundles on the Fargues-Fontainecurve 的常数项函数理论。特别是,我们证明了这些函数本质上的最优有限性定理,类似于抛物线引入和雅克特模块的通常有限性性质。我们还证明了伯恩斯坦第二邻接性定理的几何形式,推广了[Dat-Helm-Kurinczuk-Moss]中证明的经典结果及其对更一般系数环的再推广。作为应用,我们把$\mathrm{Bun}_G$上的舍弗类分解成簕杜鹃部分和爱森斯坦部分,并证明了$\mathrm{Bun}_G$的层之间的胶合函数在非常强的意义上是连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Eisenstein series I: finiteness theorems
We develop the theory of geometric Eisenstein series and constant term functors for $\ell$-adic sheaves on stacks of bundles on the Fargues-Fontaine curve. In particular, we prove essentially optimal finiteness theorems for these functors, analogous to the usual finiteness properties of parabolic inductions and Jacquet modules. We also prove a geometric form of Bernstein's second adjointness theorem, generalizing the classical result and its recent extension to more general coefficient rings proved in [Dat-Helm-Kurinczuk-Moss]. As applications, we decompose the category of sheaves on $\mathrm{Bun}_G$ into cuspidal and Eisenstein parts, and show that the gluing functors between strata of $\mathrm{Bun}_G$ are continuous in a very strong sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信