{"title":"线性里迪范畴、准遗传代数和模型结构","authors":"Georgios Dalezios, Jan Stovicek","doi":"arxiv-2409.06823","DOIUrl":null,"url":null,"abstract":"We study linear versions of Reedy categories in relation with finite\ndimensional algebras and abelian model structures. We prove that, for a linear\nReedy category $\\mathcal{C}$ over a field, the category of left\n$\\mathcal{C}$--modules admits a highest weight structure, which in case\n$\\mathcal{C}$ is finite corresponds to a quasi-hereditary algebra with an exact\nBorel subalgebra. We also lift complete cotorsion pairs and abelian model\nstructures to certain categories of additive functors indexed by linear Reedy\ncategories, generalizing analogous results from the hereditary case.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear Reedy categories, quasi-hereditary algebras and model structures\",\"authors\":\"Georgios Dalezios, Jan Stovicek\",\"doi\":\"arxiv-2409.06823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study linear versions of Reedy categories in relation with finite\\ndimensional algebras and abelian model structures. We prove that, for a linear\\nReedy category $\\\\mathcal{C}$ over a field, the category of left\\n$\\\\mathcal{C}$--modules admits a highest weight structure, which in case\\n$\\\\mathcal{C}$ is finite corresponds to a quasi-hereditary algebra with an exact\\nBorel subalgebra. We also lift complete cotorsion pairs and abelian model\\nstructures to certain categories of additive functors indexed by linear Reedy\\ncategories, generalizing analogous results from the hereditary case.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Linear Reedy categories, quasi-hereditary algebras and model structures
We study linear versions of Reedy categories in relation with finite
dimensional algebras and abelian model structures. We prove that, for a linear
Reedy category $\mathcal{C}$ over a field, the category of left
$\mathcal{C}$--modules admits a highest weight structure, which in case
$\mathcal{C}$ is finite corresponds to a quasi-hereditary algebra with an exact
Borel subalgebra. We also lift complete cotorsion pairs and abelian model
structures to certain categories of additive functors indexed by linear Reedy
categories, generalizing analogous results from the hereditary case.