若松倾斜子范畴和弱支持头倾斜子范畴的再置换

Yongduo Wang, Hongyang Luo, Jian He, Dejun Wu
{"title":"若松倾斜子范畴和弱支持头倾斜子范畴的再置换","authors":"Yongduo Wang, Hongyang Luo, Jian He, Dejun Wu","doi":"arxiv-2409.07026","DOIUrl":null,"url":null,"abstract":"In this article, we prove that if (A, B, C) is a recollement of abelian\ncategories, then wakamatsu tilting (resp. weak support tau-tilting)\nsubcategories in A and C can induce wakamatsu tilting (resp. weak support\ntau-tilting) subcategories in B, and the converses hold under natural\nassumptions. As an application, we mainly consider the relationship of\ntau-cotorsion torsion triples in (A, B, C).","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wakamatsu tilting subcategories and weak support tau-tilting subcategories in recollement\",\"authors\":\"Yongduo Wang, Hongyang Luo, Jian He, Dejun Wu\",\"doi\":\"arxiv-2409.07026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we prove that if (A, B, C) is a recollement of abelian\\ncategories, then wakamatsu tilting (resp. weak support tau-tilting)\\nsubcategories in A and C can induce wakamatsu tilting (resp. weak support\\ntau-tilting) subcategories in B, and the converses hold under natural\\nassumptions. As an application, we mainly consider the relationship of\\ntau-cotorsion torsion triples in (A, B, C).\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了如果(A,B,C)是abeliancategories的重列,那么A和C中的若松倾斜(respect. weak support tau-tilting)子类可以诱导B中的若松倾斜(respect. weak supporttau-tilting)子类,并且在自然假设下对话成立。作为应用,我们主要考虑(A, B, C)中的tau-cotorsion扭转三元组的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wakamatsu tilting subcategories and weak support tau-tilting subcategories in recollement
In this article, we prove that if (A, B, C) is a recollement of abelian categories, then wakamatsu tilting (resp. weak support tau-tilting) subcategories in A and C can induce wakamatsu tilting (resp. weak support tau-tilting) subcategories in B, and the converses hold under natural assumptions. As an application, we mainly consider the relationship of tau-cotorsion torsion triples in (A, B, C).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信