{"title":"若松倾斜子范畴和弱支持头倾斜子范畴的再置换","authors":"Yongduo Wang, Hongyang Luo, Jian He, Dejun Wu","doi":"arxiv-2409.07026","DOIUrl":null,"url":null,"abstract":"In this article, we prove that if (A, B, C) is a recollement of abelian\ncategories, then wakamatsu tilting (resp. weak support tau-tilting)\nsubcategories in A and C can induce wakamatsu tilting (resp. weak support\ntau-tilting) subcategories in B, and the converses hold under natural\nassumptions. As an application, we mainly consider the relationship of\ntau-cotorsion torsion triples in (A, B, C).","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wakamatsu tilting subcategories and weak support tau-tilting subcategories in recollement\",\"authors\":\"Yongduo Wang, Hongyang Luo, Jian He, Dejun Wu\",\"doi\":\"arxiv-2409.07026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we prove that if (A, B, C) is a recollement of abelian\\ncategories, then wakamatsu tilting (resp. weak support tau-tilting)\\nsubcategories in A and C can induce wakamatsu tilting (resp. weak support\\ntau-tilting) subcategories in B, and the converses hold under natural\\nassumptions. As an application, we mainly consider the relationship of\\ntau-cotorsion torsion triples in (A, B, C).\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们证明了如果(A,B,C)是abeliancategories的重列,那么A和C中的若松倾斜(respect. weak support tau-tilting)子类可以诱导B中的若松倾斜(respect. weak supporttau-tilting)子类,并且在自然假设下对话成立。作为应用,我们主要考虑(A, B, C)中的tau-cotorsion扭转三元组的关系。
Wakamatsu tilting subcategories and weak support tau-tilting subcategories in recollement
In this article, we prove that if (A, B, C) is a recollement of abelian
categories, then wakamatsu tilting (resp. weak support tau-tilting)
subcategories in A and C can induce wakamatsu tilting (resp. weak support
tau-tilting) subcategories in B, and the converses hold under natural
assumptions. As an application, we mainly consider the relationship of
tau-cotorsion torsion triples in (A, B, C).