简单排列的 Kac-Moody 算法的最大紧凑子代数的高自旋表征

Robin Lautenbacher, Ralf Köhl
{"title":"简单排列的 Kac-Moody 算法的最大紧凑子代数的高自旋表征","authors":"Robin Lautenbacher, Ralf Köhl","doi":"arxiv-2409.07247","DOIUrl":null,"url":null,"abstract":"Given the maximal compact subalgebra $\\mathfrak{k}(A)$ of a split-real\nKac-Moody algebra $\\mathfrak{g}(A)$ of type $A$, we study certain\nfinite-dimensional representations of $\\mathfrak{k}(A)$, that do not lift to\nthe maximal compact subgroup $K(A)$ of the minimal Kac-Moody group $G(A)$\nassociated to $\\mathfrak{g}(A)$ but only to its spin cover $Spin(A)$.\nCurrently, four elementary of these so-called spin representations are known.\nWe study their (ir-)reducibility, semi-simplicity, and lift to the group level.\nThe interaction of these representations with the spin-extended Weyl-group is\nused to derive a partial parametrization result of the representation matrices\nby the real roots of $\\mathfrak{g}(A)$.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher spin representations of maximal compact subalgebras of simply-laced Kac-Moody-algebras\",\"authors\":\"Robin Lautenbacher, Ralf Köhl\",\"doi\":\"arxiv-2409.07247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the maximal compact subalgebra $\\\\mathfrak{k}(A)$ of a split-real\\nKac-Moody algebra $\\\\mathfrak{g}(A)$ of type $A$, we study certain\\nfinite-dimensional representations of $\\\\mathfrak{k}(A)$, that do not lift to\\nthe maximal compact subgroup $K(A)$ of the minimal Kac-Moody group $G(A)$\\nassociated to $\\\\mathfrak{g}(A)$ but only to its spin cover $Spin(A)$.\\nCurrently, four elementary of these so-called spin representations are known.\\nWe study their (ir-)reducibility, semi-simplicity, and lift to the group level.\\nThe interaction of these representations with the spin-extended Weyl-group is\\nused to derive a partial parametrization result of the representation matrices\\nby the real roots of $\\\\mathfrak{g}(A)$.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定类型为 $A$ 的分裂实 Kac-Moody 代数 $/mathfrak{g}(A)$的最大紧凑子代数 $/mathfrak{k}(A)$,我们研究 $/mathfrak{k}(A)$的某些无限维表示、的最大紧凑子群 $K(A)$,而只是其自旋盖 $Spin(A)$。我们研究了它们的(非)还原性、半简约性以及提升到群层面的问题。我们利用这些表征与自旋扩展韦尔群的相互作用,通过$\mathfrak{g}(A)$的实根推导出了表征矩阵的部分参数化结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher spin representations of maximal compact subalgebras of simply-laced Kac-Moody-algebras
Given the maximal compact subalgebra $\mathfrak{k}(A)$ of a split-real Kac-Moody algebra $\mathfrak{g}(A)$ of type $A$, we study certain finite-dimensional representations of $\mathfrak{k}(A)$, that do not lift to the maximal compact subgroup $K(A)$ of the minimal Kac-Moody group $G(A)$ associated to $\mathfrak{g}(A)$ but only to its spin cover $Spin(A)$. Currently, four elementary of these so-called spin representations are known. We study their (ir-)reducibility, semi-simplicity, and lift to the group level. The interaction of these representations with the spin-extended Weyl-group is used to derive a partial parametrization result of the representation matrices by the real roots of $\mathfrak{g}(A)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信