$\mathrm{SL}_3(\Bbbk)$ 和 $\mathrm{Sp}_4(\Bbbk)$ 的无多重性和完全可还原张量乘积

Jonathan Gruber, Gaëtan Mancini
{"title":"$\\mathrm{SL}_3(\\Bbbk)$ 和 $\\mathrm{Sp}_4(\\Bbbk)$ 的无多重性和完全可还原张量乘积","authors":"Jonathan Gruber, Gaëtan Mancini","doi":"arxiv-2409.07888","DOIUrl":null,"url":null,"abstract":"Let $G$ be a simple algebraic group over an algebraically closed field\n$\\Bbbk$ of positive characteristic. We consider the questions of when the\ntensor product of two simple $G$-modules is multiplicity free or completely\nreducible. We develop tools for answering these questions in general, and we\nuse them to provide complete answers for the groups $G = \\mathrm{SL}_3(\\Bbbk)$\nand $G = \\mathrm{Sp}_4(\\Bbbk)$.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"275 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity free and completely reducible tensor products for $\\\\mathrm{SL}_3(\\\\Bbbk)$ and $\\\\mathrm{Sp}_4(\\\\Bbbk)$\",\"authors\":\"Jonathan Gruber, Gaëtan Mancini\",\"doi\":\"arxiv-2409.07888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a simple algebraic group over an algebraically closed field\\n$\\\\Bbbk$ of positive characteristic. We consider the questions of when the\\ntensor product of two simple $G$-modules is multiplicity free or completely\\nreducible. We develop tools for answering these questions in general, and we\\nuse them to provide complete answers for the groups $G = \\\\mathrm{SL}_3(\\\\Bbbk)$\\nand $G = \\\\mathrm{Sp}_4(\\\\Bbbk)$.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"275 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $G$ 是一个代数闭域$\Bbbk$ 上的正特征简单代数群。我们考虑两个简单 $G$ 模块的张量乘积何时是无多重性或完全可复性的问题。我们开发了一般地回答这些问题的工具,并利用这些工具为$G = \mathrm{SL}_3(\Bbbk)$和$G = \mathrm{Sp}_4(\Bbbk)$这两个群提供了完整的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicity free and completely reducible tensor products for $\mathrm{SL}_3(\Bbbk)$ and $\mathrm{Sp}_4(\Bbbk)$
Let $G$ be a simple algebraic group over an algebraically closed field $\Bbbk$ of positive characteristic. We consider the questions of when the tensor product of two simple $G$-modules is multiplicity free or completely reducible. We develop tools for answering these questions in general, and we use them to provide complete answers for the groups $G = \mathrm{SL}_3(\Bbbk)$ and $G = \mathrm{Sp}_4(\Bbbk)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信