{"title":"利用突触小泡释放和再循环机制向神经元输送分子","authors":"Karen KL Yee, Junichi Kumamoto, Daijiro Inomata, Naoki Suzuki, Ryuhei Harada, Norihiro Yumoto","doi":"10.1101/2024.09.11.612569","DOIUrl":null,"url":null,"abstract":"Neurodegenerative clinical trials often fail due to insufficient drug doses in reaching targeted cells and the unintended delivery to non-targeted cells. This study demonstrates an alternative neuron-selective drug delivery system, which utilizes the synaptic vesicle release and recycling mechanism (SVRM) by antibody shuttles targeting synaptic vesicle transmembrane proteins for molecule delivery. Using Synaptotagmin-2 (SYT2), we exemplify that intravenously administered anti-SYT2 antibodies localize to neuromuscular junctions, undergo uptake, and retrograde transport to ChAT-positive motor neurons (MNs) in the spinal cord and brainstem. The delivery of anti-microtubule agent and Malat1 gapmer antisense oligonucleotide to MNs with anti-SYT2 antibodies induces axon degeneration and reduction of Malat1 RNA expression, respectively. This approach circumvents the blood-spinal cord barrier, enabling selective delivery of therapeutic molecules to neurons while minimizing effects in non-targeted cells. Thus harnessing SVRM presents a promising strategy for enhancing drug concentrations in neurons and improving treatment efficacy for neurodegenerative diseases.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Synaptic Vesicle Release and Recycling Mechanism for Molecule Delivery to Neurons\",\"authors\":\"Karen KL Yee, Junichi Kumamoto, Daijiro Inomata, Naoki Suzuki, Ryuhei Harada, Norihiro Yumoto\",\"doi\":\"10.1101/2024.09.11.612569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neurodegenerative clinical trials often fail due to insufficient drug doses in reaching targeted cells and the unintended delivery to non-targeted cells. This study demonstrates an alternative neuron-selective drug delivery system, which utilizes the synaptic vesicle release and recycling mechanism (SVRM) by antibody shuttles targeting synaptic vesicle transmembrane proteins for molecule delivery. Using Synaptotagmin-2 (SYT2), we exemplify that intravenously administered anti-SYT2 antibodies localize to neuromuscular junctions, undergo uptake, and retrograde transport to ChAT-positive motor neurons (MNs) in the spinal cord and brainstem. The delivery of anti-microtubule agent and Malat1 gapmer antisense oligonucleotide to MNs with anti-SYT2 antibodies induces axon degeneration and reduction of Malat1 RNA expression, respectively. This approach circumvents the blood-spinal cord barrier, enabling selective delivery of therapeutic molecules to neurons while minimizing effects in non-targeted cells. Thus harnessing SVRM presents a promising strategy for enhancing drug concentrations in neurons and improving treatment efficacy for neurodegenerative diseases.\",\"PeriodicalId\":501581,\"journal\":{\"name\":\"bioRxiv - Neuroscience\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.11.612569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.11.612569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Harnessing Synaptic Vesicle Release and Recycling Mechanism for Molecule Delivery to Neurons
Neurodegenerative clinical trials often fail due to insufficient drug doses in reaching targeted cells and the unintended delivery to non-targeted cells. This study demonstrates an alternative neuron-selective drug delivery system, which utilizes the synaptic vesicle release and recycling mechanism (SVRM) by antibody shuttles targeting synaptic vesicle transmembrane proteins for molecule delivery. Using Synaptotagmin-2 (SYT2), we exemplify that intravenously administered anti-SYT2 antibodies localize to neuromuscular junctions, undergo uptake, and retrograde transport to ChAT-positive motor neurons (MNs) in the spinal cord and brainstem. The delivery of anti-microtubule agent and Malat1 gapmer antisense oligonucleotide to MNs with anti-SYT2 antibodies induces axon degeneration and reduction of Malat1 RNA expression, respectively. This approach circumvents the blood-spinal cord barrier, enabling selective delivery of therapeutic molecules to neurons while minimizing effects in non-targeted cells. Thus harnessing SVRM presents a promising strategy for enhancing drug concentrations in neurons and improving treatment efficacy for neurodegenerative diseases.