经典类型 $W$ 算法的构件

Thomas Creutzig, Vladimir Kovalchuk, Andrew R. Linshaw
{"title":"经典类型 $W$ 算法的构件","authors":"Thomas Creutzig, Vladimir Kovalchuk, Andrew R. Linshaw","doi":"arxiv-2409.03465","DOIUrl":null,"url":null,"abstract":"The universal $2$-parameter vertex algebra $W_{\\infty}$ of type\n$W(2,3,4,\\dots)$ serves as a classifying object for vertex algebras of type\n$W(2,3,\\dots,N)$ for some $N$ in the sense that under mild hypothesis, all such\nvertex algebras arise as quotients of $W_{\\infty}$. There is an $\\mathbb{N}\n\\times \\mathbb{N}$ family of such $1$-parameter vertex algebras known as\n$Y$-algebras. They were introduced by Gaiotto and Rap\\v{c}\\'ak and are expected\nto be the building blocks for all $W$-algebras in type $A$, i.e., every\n$W$-(super) algebra in type $A$ is an extension of a tensor product of finitely\nmany $Y$-algebras. Similarly, the orthosymplectic $Y$-algebras are\n$1$-parameter quotients of a universal $2$-parameter vertex algebra\n$W^{\\text{ev}}_{\\infty}$ of type $W(2,4,6,\\dots)$, which is a classifying\nobject for vertex algebras of type $W(2,4,\\dots, 2N)$ for some $N$. Unlike type\n$A$, these algebras are not all the building blocks for $W$-algebras of types\n$B$, $C$, and $D$. In this paper, we construct a new universal $2$-parameter\nvertex algebra of type $W(1^3, 2, 3^3, 4, 5^3,6,\\dots)$ which we denote by\n$W^{\\mathfrak{sp}}_{\\infty}$ since it contains a copy of the affine vertex\nalgebra $V^k(\\mathfrak{sp}_2)$. We identify $8$ infinite families of\n$1$-parameter quotients of $W^{\\mathfrak{sp}}_{\\infty}$ which are analogues of\nthe $Y$-algebras. We regard $W^{\\mathfrak{sp}}_{\\infty}$ as a fundamental\nobject on equal footing with $W_{\\infty}$ and $W^{\\text{ev}}_{\\infty}$, and we\ngive some heuristic reasons for why we expect the $1$-parameter quotients of\nthese three objects to be the building blocks for all $W$-algebras of classical\ntypes. Finally, we prove that $W^{\\mathfrak{sp}}_{\\infty}$ has many quotients\nwhich are strongly rational. This yields new examples of strongly rational\n$W$-superalgebras.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building blocks for $W$-algebras of classical types\",\"authors\":\"Thomas Creutzig, Vladimir Kovalchuk, Andrew R. Linshaw\",\"doi\":\"arxiv-2409.03465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The universal $2$-parameter vertex algebra $W_{\\\\infty}$ of type\\n$W(2,3,4,\\\\dots)$ serves as a classifying object for vertex algebras of type\\n$W(2,3,\\\\dots,N)$ for some $N$ in the sense that under mild hypothesis, all such\\nvertex algebras arise as quotients of $W_{\\\\infty}$. There is an $\\\\mathbb{N}\\n\\\\times \\\\mathbb{N}$ family of such $1$-parameter vertex algebras known as\\n$Y$-algebras. They were introduced by Gaiotto and Rap\\\\v{c}\\\\'ak and are expected\\nto be the building blocks for all $W$-algebras in type $A$, i.e., every\\n$W$-(super) algebra in type $A$ is an extension of a tensor product of finitely\\nmany $Y$-algebras. Similarly, the orthosymplectic $Y$-algebras are\\n$1$-parameter quotients of a universal $2$-parameter vertex algebra\\n$W^{\\\\text{ev}}_{\\\\infty}$ of type $W(2,4,6,\\\\dots)$, which is a classifying\\nobject for vertex algebras of type $W(2,4,\\\\dots, 2N)$ for some $N$. Unlike type\\n$A$, these algebras are not all the building blocks for $W$-algebras of types\\n$B$, $C$, and $D$. In this paper, we construct a new universal $2$-parameter\\nvertex algebra of type $W(1^3, 2, 3^3, 4, 5^3,6,\\\\dots)$ which we denote by\\n$W^{\\\\mathfrak{sp}}_{\\\\infty}$ since it contains a copy of the affine vertex\\nalgebra $V^k(\\\\mathfrak{sp}_2)$. We identify $8$ infinite families of\\n$1$-parameter quotients of $W^{\\\\mathfrak{sp}}_{\\\\infty}$ which are analogues of\\nthe $Y$-algebras. We regard $W^{\\\\mathfrak{sp}}_{\\\\infty}$ as a fundamental\\nobject on equal footing with $W_{\\\\infty}$ and $W^{\\\\text{ev}}_{\\\\infty}$, and we\\ngive some heuristic reasons for why we expect the $1$-parameter quotients of\\nthese three objects to be the building blocks for all $W$-algebras of classical\\ntypes. Finally, we prove that $W^{\\\\mathfrak{sp}}_{\\\\infty}$ has many quotients\\nwhich are strongly rational. This yields new examples of strongly rational\\n$W$-superalgebras.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

类型为$W(2,3,4,\dots)$的普遍的$2$参数顶点代数$W_{\infty}$可以作为某个$N$的类型为$W(2,3,\dots,N)$的顶点代数的分类对象,因为在温和假设下,所有这样的顶点代数都是作为$W_{infty}$的商出现的。有一个$\mathbb{N}times \mathbb{N}$族的这种$1$-参数顶点代数被称为$Y$-代数。它们是由 Gaiotto 和 Rap\v{c}\'ak 引入的,有望成为所有 $A$ 类型的 $W$- 算法的基石,也就是说,每一个 $A$ 类型的 $W$- (超)代数都是有限多个 $Y$- 算法的张量积的扩展。类似地,正交$Y$-代数是类型为$W(2,4,6,\dots)$的普遍$2$参数顶点代数$W^{text{ev}}_\{infty}$的$1$参数商,它是对某个$N$来说类型为$W(2,4,\dots, 2N)$的顶点代数的分类对象。与$A$类型不同,这些代数并不是$B$、$C$和$D$类型的$W$代数的全部构件。在本文中,我们构建了一个新的类型为 $W(1^3,2,3^3,4,5^3,6,\dots)$的通用$2$参数顶点代数,我们用$W^{mathfrak{sp}}_\{infty}$来表示它,因为它包含仿射顶点代数$V^k(\mathfrak{sp}_2)$的一个副本。我们确定了 $W^{\mathfrak{sp}}_{\infty}$ 的 $1$ 参数商的 $8$ 无限族,它们是 $Y$ 代数的类似物。我们将 $W^{mathfrak{sp}}_{\infty}$ 视为与 $W_{\infty}$ 和 $W^{text{ev}}_{\infty}$ 同等重要的基本对象,并给出了一些启发式的理由,说明为什么我们期望这三个对象的 $1$-参数商是所有经典类型 $W$ 算法的基石。最后,我们证明 $W^{mathfrak{sp}}_{\infty}$ 有许多商是强有理的。这就产生了强有理$W$上代数的新例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building blocks for $W$-algebras of classical types
The universal $2$-parameter vertex algebra $W_{\infty}$ of type $W(2,3,4,\dots)$ serves as a classifying object for vertex algebras of type $W(2,3,\dots,N)$ for some $N$ in the sense that under mild hypothesis, all such vertex algebras arise as quotients of $W_{\infty}$. There is an $\mathbb{N} \times \mathbb{N}$ family of such $1$-parameter vertex algebras known as $Y$-algebras. They were introduced by Gaiotto and Rap\v{c}\'ak and are expected to be the building blocks for all $W$-algebras in type $A$, i.e., every $W$-(super) algebra in type $A$ is an extension of a tensor product of finitely many $Y$-algebras. Similarly, the orthosymplectic $Y$-algebras are $1$-parameter quotients of a universal $2$-parameter vertex algebra $W^{\text{ev}}_{\infty}$ of type $W(2,4,6,\dots)$, which is a classifying object for vertex algebras of type $W(2,4,\dots, 2N)$ for some $N$. Unlike type $A$, these algebras are not all the building blocks for $W$-algebras of types $B$, $C$, and $D$. In this paper, we construct a new universal $2$-parameter vertex algebra of type $W(1^3, 2, 3^3, 4, 5^3,6,\dots)$ which we denote by $W^{\mathfrak{sp}}_{\infty}$ since it contains a copy of the affine vertex algebra $V^k(\mathfrak{sp}_2)$. We identify $8$ infinite families of $1$-parameter quotients of $W^{\mathfrak{sp}}_{\infty}$ which are analogues of the $Y$-algebras. We regard $W^{\mathfrak{sp}}_{\infty}$ as a fundamental object on equal footing with $W_{\infty}$ and $W^{\text{ev}}_{\infty}$, and we give some heuristic reasons for why we expect the $1$-parameter quotients of these three objects to be the building blocks for all $W$-algebras of classical types. Finally, we prove that $W^{\mathfrak{sp}}_{\infty}$ has many quotients which are strongly rational. This yields new examples of strongly rational $W$-superalgebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信