T^*Gr(2,4)$库仑分支的倾斜发生器

Aiden Suter, Ben Webster
{"title":"T^*Gr(2,4)$库仑分支的倾斜发生器","authors":"Aiden Suter, Ben Webster","doi":"arxiv-2409.01379","DOIUrl":null,"url":null,"abstract":"Remarkable work of Kaledin, based on earlier joint work with Bezrukavnikov,\nhas constructed a tilting generator of the category of coherent sheaves on a\nvery general class of symplectic resolutions of singularities. In this paper, we give a concrete construction of this tilting generator on\nthe cotangent bundle of $Gr(2,4)$, the Grassmannian of 2-planes in\n$\\mathbb{C}^4$. This construction builds on work of the second author\ndescribing these tilting bundles in terms of KLRW algebras, but in this\nlow-dimensional case, we are able to describe our tilting generator as a sum of\ngeometrically natural bundles on $T^*Gr(2,4)$: line bundles and their\nextensions, as well as the tautological bundle and its perpendicular.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tilting Generator for the $T^*Gr(2,4)$ Coulomb Branch\",\"authors\":\"Aiden Suter, Ben Webster\",\"doi\":\"arxiv-2409.01379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remarkable work of Kaledin, based on earlier joint work with Bezrukavnikov,\\nhas constructed a tilting generator of the category of coherent sheaves on a\\nvery general class of symplectic resolutions of singularities. In this paper, we give a concrete construction of this tilting generator on\\nthe cotangent bundle of $Gr(2,4)$, the Grassmannian of 2-planes in\\n$\\\\mathbb{C}^4$. This construction builds on work of the second author\\ndescribing these tilting bundles in terms of KLRW algebras, but in this\\nlow-dimensional case, we are able to describe our tilting generator as a sum of\\ngeometrically natural bundles on $T^*Gr(2,4)$: line bundles and their\\nextensions, as well as the tautological bundle and its perpendicular.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卡列林在早先与贝兹鲁卡夫尼科夫的合作基础上完成了一项引人注目的工作,即在奇点的交映决议的一个非常普遍的类别上构造了相干剪切类别的倾斜生成器。在本文中,我们给出了在$Gr(2,4)$(即$\mathbb{C}^4$中的2-平面的格拉斯曼体)的共切束上的这个倾斜生成器的具体构造。这个构造建立在第二位作者用 KLRW 代数描述这些倾斜束的工作之上,但是在这种低维情况下,我们能够把我们的倾斜发电机描述为 $T^*Gr(2,4)$ 上几何自然束的总和:线束及其延伸束,以及同调束及其垂线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tilting Generator for the $T^*Gr(2,4)$ Coulomb Branch
Remarkable work of Kaledin, based on earlier joint work with Bezrukavnikov, has constructed a tilting generator of the category of coherent sheaves on a very general class of symplectic resolutions of singularities. In this paper, we give a concrete construction of this tilting generator on the cotangent bundle of $Gr(2,4)$, the Grassmannian of 2-planes in $\mathbb{C}^4$. This construction builds on work of the second author describing these tilting bundles in terms of KLRW algebras, but in this low-dimensional case, we are able to describe our tilting generator as a sum of geometrically natural bundles on $T^*Gr(2,4)$: line bundles and their extensions, as well as the tautological bundle and its perpendicular.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信