{"title":"纽厄尔-利特尔伍德饱和猜想的证明","authors":"Jaewon Min","doi":"arxiv-2409.00233","DOIUrl":null,"url":null,"abstract":"By inventing the notion of honeycombs, A. Knutson and T. Tao proved the\nsaturation conjecture for Littlewood-Richardson coefficients. The\nNewell-Littlewood numbers are a generalization of the Littlewood-Richardson\ncoefficients. By introducing honeycombs on a M\\\"obius strip, we prove the\nsaturation conjecture for Newell-Littlewood numbers posed by S. Gao, G.\nOrelowitz and A. Yong.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of the Newell-Littlewood saturation conjecture\",\"authors\":\"Jaewon Min\",\"doi\":\"arxiv-2409.00233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By inventing the notion of honeycombs, A. Knutson and T. Tao proved the\\nsaturation conjecture for Littlewood-Richardson coefficients. The\\nNewell-Littlewood numbers are a generalization of the Littlewood-Richardson\\ncoefficients. By introducing honeycombs on a M\\\\\\\"obius strip, we prove the\\nsaturation conjecture for Newell-Littlewood numbers posed by S. Gao, G.\\nOrelowitz and A. Yong.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
通过发明蜂窝概念,A. Knutson 和 T. Tao 证明了 Littlewood-Richardson 系数的饱和猜想。纽厄尔-利特尔伍德数是利特尔伍德-理查德森系数的广义化。通过在 M\"obius 带上引入蜂窝,我们证明了由 S. Gao、G.Orelowitz 和 A. Yong 提出的纽厄尔-利特尔伍德数饱和猜想。
Proof of the Newell-Littlewood saturation conjecture
By inventing the notion of honeycombs, A. Knutson and T. Tao proved the
saturation conjecture for Littlewood-Richardson coefficients. The
Newell-Littlewood numbers are a generalization of the Littlewood-Richardson
coefficients. By introducing honeycombs on a M\"obius strip, we prove the
saturation conjecture for Newell-Littlewood numbers posed by S. Gao, G.
Orelowitz and A. Yong.