纽厄尔-利特尔伍德饱和猜想的证明

Jaewon Min
{"title":"纽厄尔-利特尔伍德饱和猜想的证明","authors":"Jaewon Min","doi":"arxiv-2409.00233","DOIUrl":null,"url":null,"abstract":"By inventing the notion of honeycombs, A. Knutson and T. Tao proved the\nsaturation conjecture for Littlewood-Richardson coefficients. The\nNewell-Littlewood numbers are a generalization of the Littlewood-Richardson\ncoefficients. By introducing honeycombs on a M\\\"obius strip, we prove the\nsaturation conjecture for Newell-Littlewood numbers posed by S. Gao, G.\nOrelowitz and A. Yong.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of the Newell-Littlewood saturation conjecture\",\"authors\":\"Jaewon Min\",\"doi\":\"arxiv-2409.00233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By inventing the notion of honeycombs, A. Knutson and T. Tao proved the\\nsaturation conjecture for Littlewood-Richardson coefficients. The\\nNewell-Littlewood numbers are a generalization of the Littlewood-Richardson\\ncoefficients. By introducing honeycombs on a M\\\\\\\"obius strip, we prove the\\nsaturation conjecture for Newell-Littlewood numbers posed by S. Gao, G.\\nOrelowitz and A. Yong.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过发明蜂窝概念,A. Knutson 和 T. Tao 证明了 Littlewood-Richardson 系数的饱和猜想。纽厄尔-利特尔伍德数是利特尔伍德-理查德森系数的广义化。通过在 M\"obius 带上引入蜂窝,我们证明了由 S. Gao、G.Orelowitz 和 A. Yong 提出的纽厄尔-利特尔伍德数饱和猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of the Newell-Littlewood saturation conjecture
By inventing the notion of honeycombs, A. Knutson and T. Tao proved the saturation conjecture for Littlewood-Richardson coefficients. The Newell-Littlewood numbers are a generalization of the Littlewood-Richardson coefficients. By introducing honeycombs on a M\"obius strip, we prove the saturation conjecture for Newell-Littlewood numbers posed by S. Gao, G. Orelowitz and A. Yong.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信