准投影变体上的 AV 模块的卷积

Yuly Billig, Emile Bouaziz
{"title":"准投影变体上的 AV 模块的卷积","authors":"Yuly Billig, Emile Bouaziz","doi":"arxiv-2409.02677","DOIUrl":null,"url":null,"abstract":"We study sheaves of modules for the Lie algebra of vector fields with the\naction of the algebra of functions, compatible via the Leibniz rule. A crucial\nrole in this theory is played by the virtual jets of vector fields - jets that\nevaluate to a zero vector field under the anchor map. Virtual jets of vector\nfields form a vector bundle $\\mathcal{L}_+$ whose fiber is Lie algebra\n$\\widehat{L}_+$ of vanishing at zero derivations of power series. We show that\na sheaf of $AV$-modules is characterized by two ingredients - it is a module\nfor $\\mathcal{L}_+$ and an $\\mathcal{L}_+$-charged $D$-module. For each rational finite-dimensional representation of $\\widehat{L}_+$, we\nconstruct a bundle of jet $AV$-modules. We also show that Rudakov modules may\nbe realized as tensor products of jet modules with a $D$-module of delta\nfunctions.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sheaves of AV-modules on quasi-projective varieties\",\"authors\":\"Yuly Billig, Emile Bouaziz\",\"doi\":\"arxiv-2409.02677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study sheaves of modules for the Lie algebra of vector fields with the\\naction of the algebra of functions, compatible via the Leibniz rule. A crucial\\nrole in this theory is played by the virtual jets of vector fields - jets that\\nevaluate to a zero vector field under the anchor map. Virtual jets of vector\\nfields form a vector bundle $\\\\mathcal{L}_+$ whose fiber is Lie algebra\\n$\\\\widehat{L}_+$ of vanishing at zero derivations of power series. We show that\\na sheaf of $AV$-modules is characterized by two ingredients - it is a module\\nfor $\\\\mathcal{L}_+$ and an $\\\\mathcal{L}_+$-charged $D$-module. For each rational finite-dimensional representation of $\\\\widehat{L}_+$, we\\nconstruct a bundle of jet $AV$-modules. We also show that Rudakov modules may\\nbe realized as tensor products of jet modules with a $D$-module of delta\\nfunctions.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是向量场的李代数与函数代数的作用的模块剪切,通过莱布尼兹规则相容。在这一理论中,向量场的虚射流--在锚映射下评估为零的向量场--起着至关重要的作用。向量场的虚拟射流形成了一个向量束 $\mathcal{L}_+$,它的纤维是幂级数零点导数消失的李代数 $\widehat{L}_+$。我们证明了$AV$模块的剪子有两个特征--它是$\mathcal{L}_+$的模块和$\mathcal{L}_+$带电的$D$模块。对于$\widehat{L}_+$的每个有理有限维表示,我们都构建了一个射流$AV$模块束。我们还证明,鲁达可夫模块可以实现为射流模块与三角函数$D$模块的张量积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sheaves of AV-modules on quasi-projective varieties
We study sheaves of modules for the Lie algebra of vector fields with the action of the algebra of functions, compatible via the Leibniz rule. A crucial role in this theory is played by the virtual jets of vector fields - jets that evaluate to a zero vector field under the anchor map. Virtual jets of vector fields form a vector bundle $\mathcal{L}_+$ whose fiber is Lie algebra $\widehat{L}_+$ of vanishing at zero derivations of power series. We show that a sheaf of $AV$-modules is characterized by two ingredients - it is a module for $\mathcal{L}_+$ and an $\mathcal{L}_+$-charged $D$-module. For each rational finite-dimensional representation of $\widehat{L}_+$, we construct a bundle of jet $AV$-modules. We also show that Rudakov modules may be realized as tensor products of jet modules with a $D$-module of delta functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信