融合系统和布劳尔字符的表示环

Thomas Lawrence
{"title":"融合系统和布劳尔字符的表示环","authors":"Thomas Lawrence","doi":"arxiv-2409.03007","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{F}$ be a saturated fusion system on a $p$-group $S$. We study\nthe ring $R(\\mathcal{F})$ of $\\mathcal{F}$-stable characters by exploiting a\nnew connection to the modular characters of a finite group $G$ with\n$\\mathcal{F} = \\mathcal{F}_S(G)$. We utilise this connection to find the rank\nof the $\\mathcal{F}$-stable character ring over fields with positive\ncharacteristic. We use this theory to derive a decomposition of the regular\nrepresentation for a fixed basis $B$ of the ring of complex\n$\\mathcal{F}$-stable characters and give a formula for the absolute value of\nthe determinant of the $\\mathcal{F}$-character table with respect to $B$ (the\nmatrix of the values taken by elements of $B$ on each $\\mathcal{F}$-conjugacy\nclass) for a wide class of saturated fusion systems, including all non-exotic\nfusion systems, and prove this value squared is a power of $p$ for all\nsaturated fusion systems.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representation Rings of Fusion Systems and Brauer Characters\",\"authors\":\"Thomas Lawrence\",\"doi\":\"arxiv-2409.03007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{F}$ be a saturated fusion system on a $p$-group $S$. We study\\nthe ring $R(\\\\mathcal{F})$ of $\\\\mathcal{F}$-stable characters by exploiting a\\nnew connection to the modular characters of a finite group $G$ with\\n$\\\\mathcal{F} = \\\\mathcal{F}_S(G)$. We utilise this connection to find the rank\\nof the $\\\\mathcal{F}$-stable character ring over fields with positive\\ncharacteristic. We use this theory to derive a decomposition of the regular\\nrepresentation for a fixed basis $B$ of the ring of complex\\n$\\\\mathcal{F}$-stable characters and give a formula for the absolute value of\\nthe determinant of the $\\\\mathcal{F}$-character table with respect to $B$ (the\\nmatrix of the values taken by elements of $B$ on each $\\\\mathcal{F}$-conjugacy\\nclass) for a wide class of saturated fusion systems, including all non-exotic\\nfusion systems, and prove this value squared is a power of $p$ for all\\nsaturated fusion systems.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $\mathcal{F}$ 是 $p$ 群 $S$ 上的饱和融合系统。我们研究 $\mathcal{F}$ 稳定字符的环 $R(\mathcal{F})$,方法是利用与有限群 $G$ 的模字符的新联系,即 $\mathcal{F} = \mathcal{F}_S(G)$。我们利用这种联系来求得具有正特征的域上 $mathcal{F}$ 稳定字符环的秩。我们利用这一理论推导出复数$mathcal{F}$稳定字符环的固定基$B$的正则表达式的分解,并给出了一大类饱和融合系统的$mathcal{F}$字符表行列式相对于$B$的绝对值公式(每个$mathcal{F}$-conjugacyclass上的$B$元素取值矩阵)、包括所有非异质融合系统,并证明对于所有饱和融合系统,这个值的平方是 $p$ 的幂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation Rings of Fusion Systems and Brauer Characters
Let $\mathcal{F}$ be a saturated fusion system on a $p$-group $S$. We study the ring $R(\mathcal{F})$ of $\mathcal{F}$-stable characters by exploiting a new connection to the modular characters of a finite group $G$ with $\mathcal{F} = \mathcal{F}_S(G)$. We utilise this connection to find the rank of the $\mathcal{F}$-stable character ring over fields with positive characteristic. We use this theory to derive a decomposition of the regular representation for a fixed basis $B$ of the ring of complex $\mathcal{F}$-stable characters and give a formula for the absolute value of the determinant of the $\mathcal{F}$-character table with respect to $B$ (the matrix of the values taken by elements of $B$ on each $\mathcal{F}$-conjugacy class) for a wide class of saturated fusion systems, including all non-exotic fusion systems, and prove this value squared is a power of $p$ for all saturated fusion systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信