$\mathrm{GSp}_{6}$同调类的水平规范相容性

Syed Waqar Ali Shah
{"title":"$\\mathrm{GSp}_{6}$同调类的水平规范相容性","authors":"Syed Waqar Ali Shah","doi":"arxiv-2409.03738","DOIUrl":null,"url":null,"abstract":"We establish abstract horizontal norm relations involving the unramified\nHecke-Frobenius polynomials that correspond under the Satake isomorhpism to the\ndegree eight spinor $L$-factors of $ \\mathrm{GSp}_{6} $. These relations apply\nto classes in the degree seven motivic cohomology of the Siegel modular sixfold\nobtained via Gysin pushforwards of Beilinson's Eisenstein symbol pulled back on\none copy in a triple product of modular curves. The proof is based on a novel\napproach that circumvents the failure of the so-called multiplicity one\nhypothesis in our setting, which precludes the applicability of an existing\ntechnique. In a sequel, we combine our result with the previously established\nvertical norm relations for these classes to obtain new Euler systems for the\neight dimensional Galois representations associated with certain non-endoscopic\ncohomological cuspidal automorphic representations of $ \\mathrm{GSp}_{6} $.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Horizontal norm compatibility of cohomology classes for $\\\\mathrm{GSp}_{6}$\",\"authors\":\"Syed Waqar Ali Shah\",\"doi\":\"arxiv-2409.03738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish abstract horizontal norm relations involving the unramified\\nHecke-Frobenius polynomials that correspond under the Satake isomorhpism to the\\ndegree eight spinor $L$-factors of $ \\\\mathrm{GSp}_{6} $. These relations apply\\nto classes in the degree seven motivic cohomology of the Siegel modular sixfold\\nobtained via Gysin pushforwards of Beilinson's Eisenstein symbol pulled back on\\none copy in a triple product of modular curves. The proof is based on a novel\\napproach that circumvents the failure of the so-called multiplicity one\\nhypothesis in our setting, which precludes the applicability of an existing\\ntechnique. In a sequel, we combine our result with the previously established\\nvertical norm relations for these classes to obtain new Euler systems for the\\neight dimensional Galois representations associated with certain non-endoscopic\\ncohomological cuspidal automorphic representations of $ \\\\mathrm{GSp}_{6} $.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了涉及无ramified 赫克-弗罗贝尼斯多项式的抽象水平规范关系,这些多项式在佐竹同构下对应于 $ \mathrm{GSp}_{6} 的八度自旋 $L$ 因子。这些关系适用于西格尔模态六重的七度动机同调中的类,这些类是通过贝林森的爱森斯坦符号在模态曲线的三重乘中的一个副本上拉回的Gysin pushforwards而得到的。证明基于一种新颖的方法,它规避了所谓多重性假设在我们的环境中的失效,而这种失效排除了现有技术的适用性。在续集中,我们将我们的结果与先前建立的这些类的垂直规范关系结合起来,得到了与 $ \mathrm{GSp}_{6} 的某些非内视同调簇自形表征相关的八维伽罗瓦表征的新欧拉系统。$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Horizontal norm compatibility of cohomology classes for $\mathrm{GSp}_{6}$
We establish abstract horizontal norm relations involving the unramified Hecke-Frobenius polynomials that correspond under the Satake isomorhpism to the degree eight spinor $L$-factors of $ \mathrm{GSp}_{6} $. These relations apply to classes in the degree seven motivic cohomology of the Siegel modular sixfold obtained via Gysin pushforwards of Beilinson's Eisenstein symbol pulled back on one copy in a triple product of modular curves. The proof is based on a novel approach that circumvents the failure of the so-called multiplicity one hypothesis in our setting, which precludes the applicability of an existing technique. In a sequel, we combine our result with the previously established vertical norm relations for these classes to obtain new Euler systems for the eight dimensional Galois representations associated with certain non-endoscopic cohomological cuspidal automorphic representations of $ \mathrm{GSp}_{6} $.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信