准指数维表示中哈尔单元的强渐近自由性

Michael Magee, Mikael de la Salle
{"title":"准指数维表示中哈尔单元的强渐近自由性","authors":"Michael Magee, Mikael de la Salle","doi":"arxiv-2409.03626","DOIUrl":null,"url":null,"abstract":"We prove almost sure strong asymptotic freeness of i.i.d. random unitaries\nwith the following law: sample a Haar unitary matrix of dimension $n$ and then\nsend this unitary into an irreducible representation of $U(n)$. The strong\nconvergence holds as long as the irreducible representation arises from a pair\nof partitions of total size at most $n^{\\frac{1}{24}-\\varepsilon}$ and is\nuniform in this regime. Previously this was known for partitions of total size up to $\\asymp\\log\nn/\\log\\log n$ by a result of Bordenave and Collins.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong asymptotic freeness of Haar unitaries in quasi-exponential dimensional representations\",\"authors\":\"Michael Magee, Mikael de la Salle\",\"doi\":\"arxiv-2409.03626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove almost sure strong asymptotic freeness of i.i.d. random unitaries\\nwith the following law: sample a Haar unitary matrix of dimension $n$ and then\\nsend this unitary into an irreducible representation of $U(n)$. The strong\\nconvergence holds as long as the irreducible representation arises from a pair\\nof partitions of total size at most $n^{\\\\frac{1}{24}-\\\\varepsilon}$ and is\\nuniform in this regime. Previously this was known for partitions of total size up to $\\\\asymp\\\\log\\nn/\\\\log\\\\log n$ by a result of Bordenave and Collins.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们用以下定律证明了 i.i.d. 随机单元矩阵几乎肯定的强渐近自由性:对维数为 $n$ 的哈氏单元矩阵进行采样,然后将此单元矩阵发送到 $U(n)$ 的不可还原表示中。只要不可还原表示来自总大小至多为 $n^{frac{1}{24}-\varepsilon}$ 的一组分区,并且在这一范围内是均匀的,强收敛性就成立。在此之前,人们通过波登纳夫和柯林斯的一个结果知道,对于总大小最多为 $\asymp\logn/\log n$ 的分区来说,这一点是已知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong asymptotic freeness of Haar unitaries in quasi-exponential dimensional representations
We prove almost sure strong asymptotic freeness of i.i.d. random unitaries with the following law: sample a Haar unitary matrix of dimension $n$ and then send this unitary into an irreducible representation of $U(n)$. The strong convergence holds as long as the irreducible representation arises from a pair of partitions of total size at most $n^{\frac{1}{24}-\varepsilon}$ and is uniform in this regime. Previously this was known for partitions of total size up to $\asymp\log n/\log\log n$ by a result of Bordenave and Collins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信