洛伦兹和八音佐竹等效性

Tsao-Hsien Chen, John O'Brien
{"title":"洛伦兹和八音佐竹等效性","authors":"Tsao-Hsien Chen, John O'Brien","doi":"arxiv-2409.03969","DOIUrl":null,"url":null,"abstract":"We establish a derived geometric Satake equivalence for the real group\n$G_{\\mathbb R}=PSO(2n-1,1)$ (resp. $PE_6(F_4)$), to be called the Lorentzian\nSatake equivalence (resp. Octonionic Satake equivalence). By applying the\nreal-symmetric correspondence for affine Grassmannians, we obtain a derived\ngeometric Satake equivalence for the splitting rank symmetric variety\n$X=PSO_{2n}/SO_{2n-1}$ (resp. $PE_6/F_4$). As an application, we compute the\nstalks of the $\\text{IC}$-complexes for spherical orbit closures in the real\naffine Grassmannian for $G_{\\mathbb R}$ and the loop space of $X$. We show the\nstalks are given by the Kostka-Foulkes polynomials for $GL_2$ (resp. $GL_3$)\nbut with $q$ replaced by $q^{n-1}$ (resp. $q^4$).","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lorentzian and Octonionic Satake equivalence\",\"authors\":\"Tsao-Hsien Chen, John O'Brien\",\"doi\":\"arxiv-2409.03969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a derived geometric Satake equivalence for the real group\\n$G_{\\\\mathbb R}=PSO(2n-1,1)$ (resp. $PE_6(F_4)$), to be called the Lorentzian\\nSatake equivalence (resp. Octonionic Satake equivalence). By applying the\\nreal-symmetric correspondence for affine Grassmannians, we obtain a derived\\ngeometric Satake equivalence for the splitting rank symmetric variety\\n$X=PSO_{2n}/SO_{2n-1}$ (resp. $PE_6/F_4$). As an application, we compute the\\nstalks of the $\\\\text{IC}$-complexes for spherical orbit closures in the real\\naffine Grassmannian for $G_{\\\\mathbb R}$ and the loop space of $X$. We show the\\nstalks are given by the Kostka-Foulkes polynomials for $GL_2$ (resp. $GL_3$)\\nbut with $q$ replaced by $q^{n-1}$ (resp. $q^4$).\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为实群$G_{\mathbb R}=PSO(2n-1,1)$ (resp. $PE_6(F_4)$)建立了一个派生几何里岳等价性,称为洛伦兹里岳等价性(res. Octonionic Satake equivalence)。通过应用仿射格拉斯曼的等价对称对应关系,我们得到了分裂秩对称品种$X=PSO_{2n}/SO_{2n-1}$(即$PE_6/F_4$)的派生几何嗲克等价。作为应用,我们计算了 $G_{\mathbb R}$ 和 $X$ 的环空间的实阿芬格拉斯曼中球形轨道闭合的 $\text{IC}$复数的stalks。我们证明了这些复数是由 $GL_2$ (resp. $GL_3$)的 Kostka-Foulkes 多项式给出的,只是把 $q$ 换成了 $q^{n-1}$ (resp. $q^4$)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lorentzian and Octonionic Satake equivalence
We establish a derived geometric Satake equivalence for the real group $G_{\mathbb R}=PSO(2n-1,1)$ (resp. $PE_6(F_4)$), to be called the Lorentzian Satake equivalence (resp. Octonionic Satake equivalence). By applying the real-symmetric correspondence for affine Grassmannians, we obtain a derived geometric Satake equivalence for the splitting rank symmetric variety $X=PSO_{2n}/SO_{2n-1}$ (resp. $PE_6/F_4$). As an application, we compute the stalks of the $\text{IC}$-complexes for spherical orbit closures in the real affine Grassmannian for $G_{\mathbb R}$ and the loop space of $X$. We show the stalks are given by the Kostka-Foulkes polynomials for $GL_2$ (resp. $GL_3$) but with $q$ replaced by $q^{n-1}$ (resp. $q^4$).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信