从舒伯特变项到双球面变项

Mahir Bilen Can, S. Senthamarai Kannan, Pinakinath Saha
{"title":"从舒伯特变项到双球面变项","authors":"Mahir Bilen Can, S. Senthamarai Kannan, Pinakinath Saha","doi":"arxiv-2409.04879","DOIUrl":null,"url":null,"abstract":"Horospherical Schubert varieties are determined. It is shown that the\nstabilizer of an arbitrary point in a Schubert variety is a strongly solvable\nalgebraic group. The connectedness of this stabilizer subgroup is discussed.\nMoreover, a new family of spherical varieties, called doubly spherical\nvarieties, is introduced. It is shown that every nearly toric Schubert variety\nis doubly spherical.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Schubert Varieties to Doubly-Spherical Varieties\",\"authors\":\"Mahir Bilen Can, S. Senthamarai Kannan, Pinakinath Saha\",\"doi\":\"arxiv-2409.04879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Horospherical Schubert varieties are determined. It is shown that the\\nstabilizer of an arbitrary point in a Schubert variety is a strongly solvable\\nalgebraic group. The connectedness of this stabilizer subgroup is discussed.\\nMoreover, a new family of spherical varieties, called doubly spherical\\nvarieties, is introduced. It is shown that every nearly toric Schubert variety\\nis doubly spherical.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定了Horospherical Schubert varieties。研究表明,舒伯特变中任意点的稳定子是一个强可解代数群。此外,还引入了一个新的球面品种族,称为双球面品种。证明了每个近环形舒伯特变都是双球面的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Schubert Varieties to Doubly-Spherical Varieties
Horospherical Schubert varieties are determined. It is shown that the stabilizer of an arbitrary point in a Schubert variety is a strongly solvable algebraic group. The connectedness of this stabilizer subgroup is discussed. Moreover, a new family of spherical varieties, called doubly spherical varieties, is introduced. It is shown that every nearly toric Schubert variety is doubly spherical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信