{"title":"零能李群及其紧凑零曼弗雷德上的半经典函数微积分","authors":"Véronique Fischer, Søren Mikkelsen","doi":"arxiv-2409.05520","DOIUrl":null,"url":null,"abstract":"In this paper, we show that the semiclassical calculus recently developed on\nnilpotent Lie groups and nilmanifolds include the functional calculus of\nsuitable subelliptic operators. Moreover, we obtain Weyl laws for these\noperators. Amongst these operators are sub-Laplacians in horizontal divergence\nform perturbed with a potential and their generalisations.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiclassical functional calculus on nilpotent Lie groups and their compact nilmanifolds\",\"authors\":\"Véronique Fischer, Søren Mikkelsen\",\"doi\":\"arxiv-2409.05520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show that the semiclassical calculus recently developed on\\nnilpotent Lie groups and nilmanifolds include the functional calculus of\\nsuitable subelliptic operators. Moreover, we obtain Weyl laws for these\\noperators. Amongst these operators are sub-Laplacians in horizontal divergence\\nform perturbed with a potential and their generalisations.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semiclassical functional calculus on nilpotent Lie groups and their compact nilmanifolds
In this paper, we show that the semiclassical calculus recently developed on
nilpotent Lie groups and nilmanifolds include the functional calculus of
suitable subelliptic operators. Moreover, we obtain Weyl laws for these
operators. Amongst these operators are sub-Laplacians in horizontal divergence
form perturbed with a potential and their generalisations.