David Ben-Zvi, Yiannis Sakellaridis, Akshay Venkatesh
{"title":"相对朗兰兹二重性","authors":"David Ben-Zvi, Yiannis Sakellaridis, Akshay Venkatesh","doi":"arxiv-2409.04677","DOIUrl":null,"url":null,"abstract":"We propose a duality in the relative Langlands program. This duality pairs a\nHamiltonian space for a group $G$ with a Hamiltonian space under its dual group\n$\\check{G}$, and recovers at a numerical level the relationship between a\nperiod on $G$ and an $L$-function attached to $\\check{G}$; it is an arithmetic\nanalog of the electric-magnetic duality of boundary conditions in\nfour-dimensional supersymmetric Yang-Mills theory.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative Langlands Duality\",\"authors\":\"David Ben-Zvi, Yiannis Sakellaridis, Akshay Venkatesh\",\"doi\":\"arxiv-2409.04677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a duality in the relative Langlands program. This duality pairs a\\nHamiltonian space for a group $G$ with a Hamiltonian space under its dual group\\n$\\\\check{G}$, and recovers at a numerical level the relationship between a\\nperiod on $G$ and an $L$-function attached to $\\\\check{G}$; it is an arithmetic\\nanalog of the electric-magnetic duality of boundary conditions in\\nfour-dimensional supersymmetric Yang-Mills theory.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We propose a duality in the relative Langlands program. This duality pairs a
Hamiltonian space for a group $G$ with a Hamiltonian space under its dual group
$\check{G}$, and recovers at a numerical level the relationship between a
period on $G$ and an $L$-function attached to $\check{G}$; it is an arithmetic
analog of the electric-magnetic duality of boundary conditions in
four-dimensional supersymmetric Yang-Mills theory.