右 (n+2)-angulated 类别公理

Jing He, Jiangsha Li
{"title":"右 (n+2)-angulated 类别公理","authors":"Jing He, Jiangsha Li","doi":"arxiv-2409.05561","DOIUrl":null,"url":null,"abstract":"Drawing inspiration from the works of Beligiannis-Marmaridis and Lin, we\nrefine the axioms for a right $(n+2)$-angulated category and give some examples\nof such categories. Interestingly, we show that the morphism axiom for a right\n$(n+2)$-angulated category is actually redundant. Moreover, we prove that the\nhigher octahedral axiom is equivalent to the mapping cone axiom for a right\n$(n+2)$-angulated category.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The axioms for right (n+2)-angulated categories\",\"authors\":\"Jing He, Jiangsha Li\",\"doi\":\"arxiv-2409.05561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drawing inspiration from the works of Beligiannis-Marmaridis and Lin, we\\nrefine the axioms for a right $(n+2)$-angulated category and give some examples\\nof such categories. Interestingly, we show that the morphism axiom for a right\\n$(n+2)$-angulated category is actually redundant. Moreover, we prove that the\\nhigher octahedral axiom is equivalent to the mapping cone axiom for a right\\n$(n+2)$-angulated category.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们从贝里吉安尼斯-马尔马里迪斯(Beligiannis-Marmaridis)和林(Lin)的著作中汲取灵感,细化了右$(n+2)$有角范畴的公理,并给出了一些这类范畴的例子。有趣的是,我们证明了右$(n+2)$有角范畴的态公理实际上是多余的。此外,我们还证明了高八面体公理等价于右$(n+2)$有棱类的映射锥公理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The axioms for right (n+2)-angulated categories
Drawing inspiration from the works of Beligiannis-Marmaridis and Lin, we refine the axioms for a right $(n+2)$-angulated category and give some examples of such categories. Interestingly, we show that the morphism axiom for a right $(n+2)$-angulated category is actually redundant. Moreover, we prove that the higher octahedral axiom is equivalent to the mapping cone axiom for a right $(n+2)$-angulated category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信