{"title":"不受海马锐波波纹调节的内侧前额叶皮层神经元参与空间调谐和即将到来的选择信号传递。","authors":"Hanna den Bakker, Fabian Kloosterman","doi":"10.1101/2024.09.09.610935","DOIUrl":null,"url":null,"abstract":"The hippocampus is known to encode spatial information and reactivate experienced trajectories during sharp-wave ripple events. These events are thought to be key time-points at which information about learned trajectories is transferred to the neocortex for long-term storage. It is unclear, however, how this information may be transferred and integrated in downstream cortical regions. In this study, we performed high-density probe recordings across the full depth of the medial prefrontal cortex and in the hippocampus simultaneously in rats while they were performing a task of spatial navigation. We find that neurons in the medial prefrontal cortex encode spatial information and reliably predict upcoming choice on a maze, and we find that a subset of neurons in the mPFC is modulated by hippocampal sharp-wave ripples. However, the neurons that are involved in predicting upcoming choice are not the neurons that are modulated by hippocampal sharp-wave ripples. This indicates that the integration of spatial information requires the collaboration of different specialized populations of neurons.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neurons in the medial prefrontal cortex that are not modulated by hippocampal sharp-wave ripples are involved in spatial tuning and signaling upcoming choice.\",\"authors\":\"Hanna den Bakker, Fabian Kloosterman\",\"doi\":\"10.1101/2024.09.09.610935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hippocampus is known to encode spatial information and reactivate experienced trajectories during sharp-wave ripple events. These events are thought to be key time-points at which information about learned trajectories is transferred to the neocortex for long-term storage. It is unclear, however, how this information may be transferred and integrated in downstream cortical regions. In this study, we performed high-density probe recordings across the full depth of the medial prefrontal cortex and in the hippocampus simultaneously in rats while they were performing a task of spatial navigation. We find that neurons in the medial prefrontal cortex encode spatial information and reliably predict upcoming choice on a maze, and we find that a subset of neurons in the mPFC is modulated by hippocampal sharp-wave ripples. However, the neurons that are involved in predicting upcoming choice are not the neurons that are modulated by hippocampal sharp-wave ripples. This indicates that the integration of spatial information requires the collaboration of different specialized populations of neurons.\",\"PeriodicalId\":501581,\"journal\":{\"name\":\"bioRxiv - Neuroscience\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.09.610935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.09.610935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neurons in the medial prefrontal cortex that are not modulated by hippocampal sharp-wave ripples are involved in spatial tuning and signaling upcoming choice.
The hippocampus is known to encode spatial information and reactivate experienced trajectories during sharp-wave ripple events. These events are thought to be key time-points at which information about learned trajectories is transferred to the neocortex for long-term storage. It is unclear, however, how this information may be transferred and integrated in downstream cortical regions. In this study, we performed high-density probe recordings across the full depth of the medial prefrontal cortex and in the hippocampus simultaneously in rats while they were performing a task of spatial navigation. We find that neurons in the medial prefrontal cortex encode spatial information and reliably predict upcoming choice on a maze, and we find that a subset of neurons in the mPFC is modulated by hippocampal sharp-wave ripples. However, the neurons that are involved in predicting upcoming choice are not the neurons that are modulated by hippocampal sharp-wave ripples. This indicates that the integration of spatial information requires the collaboration of different specialized populations of neurons.