Lola Beerendonk, Jorge F. Mejias, Stijn A. Nuiten, Jan Willem de Gee, Jasper B Zantvoord, Johannes Jacobus Fahrenfort, Simon van Gaal
{"title":"适应性唤醒调节:儿茶酚胺能增强唤醒,从而通过药理学改变耶克斯-多德森曲线的峰值","authors":"Lola Beerendonk, Jorge F. Mejias, Stijn A. Nuiten, Jan Willem de Gee, Jasper B Zantvoord, Johannes Jacobus Fahrenfort, Simon van Gaal","doi":"10.1101/2024.09.11.612196","DOIUrl":null,"url":null,"abstract":"Performance typically peaks at moderate arousal levels, consistent with the Yerkes-Dodson law, as confirmed by recent human and mouse pupillometry studies. Arousal states are influenced by neuromodulators like catecholamines (noradrenaline; NA and dopamine; DA) and acetylcholine (ACh). To explore their causal roles in this law, we pharmacologically enhanced arousal while measuring human decision-making and spontaneous arousal fluctuations via pupil size. The catecholaminergic agent atomoxetine (ATX) increased overall arousal and shifted the entire arousal-performance curve, suggesting a relative arousal mechanism where performance adapts to arousal fluctuations within arousal states. In contrast, the cholinergic agent donepezil (DNP) did not affect arousal or the curve. We modeled these findings in a neurobiologically plausible computational framework, showing how catecholaminergic modulation alters a disinhibitory neural circuit that encodes sensory evidence for decision-making. This work suggests that performance adapts flexibly to arousal fluctuations, ensuring optimal performance in each and every arousal state.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive arousal regulation: Pharmacologically shifting the peak of the Yerkes-Dodson curve by catecholaminergic enhancement of arousal\",\"authors\":\"Lola Beerendonk, Jorge F. Mejias, Stijn A. Nuiten, Jan Willem de Gee, Jasper B Zantvoord, Johannes Jacobus Fahrenfort, Simon van Gaal\",\"doi\":\"10.1101/2024.09.11.612196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance typically peaks at moderate arousal levels, consistent with the Yerkes-Dodson law, as confirmed by recent human and mouse pupillometry studies. Arousal states are influenced by neuromodulators like catecholamines (noradrenaline; NA and dopamine; DA) and acetylcholine (ACh). To explore their causal roles in this law, we pharmacologically enhanced arousal while measuring human decision-making and spontaneous arousal fluctuations via pupil size. The catecholaminergic agent atomoxetine (ATX) increased overall arousal and shifted the entire arousal-performance curve, suggesting a relative arousal mechanism where performance adapts to arousal fluctuations within arousal states. In contrast, the cholinergic agent donepezil (DNP) did not affect arousal or the curve. We modeled these findings in a neurobiologically plausible computational framework, showing how catecholaminergic modulation alters a disinhibitory neural circuit that encodes sensory evidence for decision-making. This work suggests that performance adapts flexibly to arousal fluctuations, ensuring optimal performance in each and every arousal state.\",\"PeriodicalId\":501581,\"journal\":{\"name\":\"bioRxiv - Neuroscience\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.11.612196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.11.612196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive arousal regulation: Pharmacologically shifting the peak of the Yerkes-Dodson curve by catecholaminergic enhancement of arousal
Performance typically peaks at moderate arousal levels, consistent with the Yerkes-Dodson law, as confirmed by recent human and mouse pupillometry studies. Arousal states are influenced by neuromodulators like catecholamines (noradrenaline; NA and dopamine; DA) and acetylcholine (ACh). To explore their causal roles in this law, we pharmacologically enhanced arousal while measuring human decision-making and spontaneous arousal fluctuations via pupil size. The catecholaminergic agent atomoxetine (ATX) increased overall arousal and shifted the entire arousal-performance curve, suggesting a relative arousal mechanism where performance adapts to arousal fluctuations within arousal states. In contrast, the cholinergic agent donepezil (DNP) did not affect arousal or the curve. We modeled these findings in a neurobiologically plausible computational framework, showing how catecholaminergic modulation alters a disinhibitory neural circuit that encodes sensory evidence for decision-making. This work suggests that performance adapts flexibly to arousal fluctuations, ensuring optimal performance in each and every arousal state.