{"title":"从局部紧凑群的投影表示谈框架","authors":"Junyun Chen, Chuangxun Cheng","doi":"10.1007/s00041-024-10108-9","DOIUrl":null,"url":null,"abstract":"<p>A projective representation of a locally compact group does phase retrieval if it admits a maximal spanning frame vector. In this paper, we provide a characterization of maximal spanning vectors for type I and square integrable irreducible projective representations of separable locally compact abelian groups. This generalizes the well-known criterion for the time–frequency case and unifies previous criteria for finite groups case and locally compact Gabor case. As an application, we show that irreducible projective representations of compact abelian groups do phase retrieval.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on Frames from Projective Representations of Locally Compact Groups\",\"authors\":\"Junyun Chen, Chuangxun Cheng\",\"doi\":\"10.1007/s00041-024-10108-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A projective representation of a locally compact group does phase retrieval if it admits a maximal spanning frame vector. In this paper, we provide a characterization of maximal spanning vectors for type I and square integrable irreducible projective representations of separable locally compact abelian groups. This generalizes the well-known criterion for the time–frequency case and unifies previous criteria for finite groups case and locally compact Gabor case. As an application, we show that irreducible projective representations of compact abelian groups do phase retrieval.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00041-024-10108-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-024-10108-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
如果局部紧密群的投影表示存在最大跨帧向量,那么它就能进行相检索。在本文中,我们为可分离局部紧凑阿贝尔群的 I 型和平方可积分不可还原投影表示提供了最大跨度向量的特征。这概括了众所周知的时频判据,并统一了之前的有限群判据和局部紧凑 Gabor 判据。作为应用,我们证明了紧凑无性群的不可还原投影表示可以进行相位检索。
Remarks on Frames from Projective Representations of Locally Compact Groups
A projective representation of a locally compact group does phase retrieval if it admits a maximal spanning frame vector. In this paper, we provide a characterization of maximal spanning vectors for type I and square integrable irreducible projective representations of separable locally compact abelian groups. This generalizes the well-known criterion for the time–frequency case and unifies previous criteria for finite groups case and locally compact Gabor case. As an application, we show that irreducible projective representations of compact abelian groups do phase retrieval.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.