有限群上的矩阵球面函数

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
C. Blanco Villacorta, I. Pacharoni, J. A. Tirao
{"title":"有限群上的矩阵球面函数","authors":"C. Blanco Villacorta, I. Pacharoni, J. A. Tirao","doi":"10.1007/s00041-024-10110-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper we focus our attention on matrix or operator-valued spherical functions associated to finite groups (<i>G</i>, <i>K</i>), where <i>K</i> is a subgroup of <i>G</i>. We introduce the notion of matrix-valued spherical functions on <i>G</i> associated to any <i>K</i>-type <span>\\(\\delta \\in \\hat{K}\\)</span> by means of solutions of certain associated integral equations. The main properties of spherical functions are established from their characterization as eigenfunctions of right convolution multiplication by functions in <span>\\(A[G]^K\\)</span>, the algebra of <i>K</i>-central functions in the group algebra <i>A</i>[<i>G</i>]. The irreducible representations of <span>\\(A[G]^K\\)</span> are closely related to the irreducible spherical functions on <i>G</i>. This allows us to study and compute spherical functions via the representations of this algebra.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix Spherical Functions on Finite Groups\",\"authors\":\"C. Blanco Villacorta, I. Pacharoni, J. A. Tirao\",\"doi\":\"10.1007/s00041-024-10110-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we focus our attention on matrix or operator-valued spherical functions associated to finite groups (<i>G</i>, <i>K</i>), where <i>K</i> is a subgroup of <i>G</i>. We introduce the notion of matrix-valued spherical functions on <i>G</i> associated to any <i>K</i>-type <span>\\\\(\\\\delta \\\\in \\\\hat{K}\\\\)</span> by means of solutions of certain associated integral equations. The main properties of spherical functions are established from their characterization as eigenfunctions of right convolution multiplication by functions in <span>\\\\(A[G]^K\\\\)</span>, the algebra of <i>K</i>-central functions in the group algebra <i>A</i>[<i>G</i>]. The irreducible representations of <span>\\\\(A[G]^K\\\\)</span> are closely related to the irreducible spherical functions on <i>G</i>. This allows us to study and compute spherical functions via the representations of this algebra.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00041-024-10110-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-024-10110-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将注意力集中在与有限群(G,K)相关联的矩阵或算子值球函数上,其中 K 是 G 的一个子群。我们通过某些相关积分方程的解引入了与任意 K 型 \(\delta \in \hat{K}\) 相关联的 G 上矩阵值球函数的概念。球函数的主要性质是从它们作为右卷积乘以群代数 A[G] 中的 K 中心函数代数 \(A[G]^K\)中函数的特征函数的特性中建立起来的。\(A[G]^K\) 的不可还原表示与 G 上的不可还原球函数密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Matrix Spherical Functions on Finite Groups

Matrix Spherical Functions on Finite Groups

In this paper we focus our attention on matrix or operator-valued spherical functions associated to finite groups (GK), where K is a subgroup of G. We introduce the notion of matrix-valued spherical functions on G associated to any K-type \(\delta \in \hat{K}\) by means of solutions of certain associated integral equations. The main properties of spherical functions are established from their characterization as eigenfunctions of right convolution multiplication by functions in \(A[G]^K\), the algebra of K-central functions in the group algebra A[G]. The irreducible representations of \(A[G]^K\) are closely related to the irreducible spherical functions on G. This allows us to study and compute spherical functions via the representations of this algebra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信