Yiwen Zhang , Bingfang Hu , Shaoxing Guan , Pan Li , Yingjie Guo , Pengfei Xu , Yongdong Niu , Yujin Li , Ye Feng , Jiewen Du , Jun Xu , Xiuchen Guan , Jingkai Gu , Haiyan Sun , Min Huang
{"title":"通过转录激活脂肪酸结合蛋白 4,激活孕烷 X 受体使酒精性脂肪性肝炎变得敏感","authors":"Yiwen Zhang , Bingfang Hu , Shaoxing Guan , Pan Li , Yingjie Guo , Pengfei Xu , Yongdong Niu , Yujin Li , Ye Feng , Jiewen Du , Jun Xu , Xiuchen Guan , Jingkai Gu , Haiyan Sun , Min Huang","doi":"10.1016/j.apsb.2024.08.029","DOIUrl":null,"url":null,"abstract":"<div><div>Alcoholic steatohepatitis (ASH) is a liver disease characterized by steatosis, inflammation, and necrosis of the liver tissue as a result of excessive alcohol consumption. Pregnane X receptor (PXR) is a xenobiotic nuclear receptor best known for its function in the transcriptional regulation of drug metabolism and disposition. Clinical reports suggested that the antibiotic rifampicin, a potent human PXR activator, is a contraindication in alcoholics, but the mechanism was unclear. In this study, we showed that the hepatic expression of fatty acid binding protein 4 (FABP4) was uniquely elevated in ASH patients and a mouse model of ASH. Pharmacological inhibiting FABP4 attenuated ASH in mice. Furthermore, treatment of mice with the mouse PXR agonist pregnenolon-16<em>α</em>-carbonitrile (PCN) induced the hepatic and circulating levels of FABP4 and exacerbated ASH in a PXR-dependent manner. Our mechanism study established FABP4 as a transcriptional target of PXR. Treatment with andrographolide, a natural compound and dual inhibitor of PXR and FABP4, alleviated mice from ASH. In summary, our results showed that the PXR–FABP4 gene regulatory axis plays an important role in the progression of ASH, which may have accounted for the contraindication of rifampicin in patients of alcoholic liver disease. Pharmacological inhibition of PXR and/or FABP4 may have its promise in the clinical management of ASH.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"14 11","pages":"Pages 4776-4788"},"PeriodicalIF":14.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation of pregnane X receptor sensitizes alcoholic steatohepatitis by transactivating fatty acid binding protein 4\",\"authors\":\"Yiwen Zhang , Bingfang Hu , Shaoxing Guan , Pan Li , Yingjie Guo , Pengfei Xu , Yongdong Niu , Yujin Li , Ye Feng , Jiewen Du , Jun Xu , Xiuchen Guan , Jingkai Gu , Haiyan Sun , Min Huang\",\"doi\":\"10.1016/j.apsb.2024.08.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alcoholic steatohepatitis (ASH) is a liver disease characterized by steatosis, inflammation, and necrosis of the liver tissue as a result of excessive alcohol consumption. Pregnane X receptor (PXR) is a xenobiotic nuclear receptor best known for its function in the transcriptional regulation of drug metabolism and disposition. Clinical reports suggested that the antibiotic rifampicin, a potent human PXR activator, is a contraindication in alcoholics, but the mechanism was unclear. In this study, we showed that the hepatic expression of fatty acid binding protein 4 (FABP4) was uniquely elevated in ASH patients and a mouse model of ASH. Pharmacological inhibiting FABP4 attenuated ASH in mice. Furthermore, treatment of mice with the mouse PXR agonist pregnenolon-16<em>α</em>-carbonitrile (PCN) induced the hepatic and circulating levels of FABP4 and exacerbated ASH in a PXR-dependent manner. Our mechanism study established FABP4 as a transcriptional target of PXR. Treatment with andrographolide, a natural compound and dual inhibitor of PXR and FABP4, alleviated mice from ASH. In summary, our results showed that the PXR–FABP4 gene regulatory axis plays an important role in the progression of ASH, which may have accounted for the contraindication of rifampicin in patients of alcoholic liver disease. Pharmacological inhibition of PXR and/or FABP4 may have its promise in the clinical management of ASH.</div></div>\",\"PeriodicalId\":6906,\"journal\":{\"name\":\"Acta Pharmaceutica Sinica. B\",\"volume\":\"14 11\",\"pages\":\"Pages 4776-4788\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmaceutica Sinica. B\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211383524003460\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211383524003460","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Activation of pregnane X receptor sensitizes alcoholic steatohepatitis by transactivating fatty acid binding protein 4
Alcoholic steatohepatitis (ASH) is a liver disease characterized by steatosis, inflammation, and necrosis of the liver tissue as a result of excessive alcohol consumption. Pregnane X receptor (PXR) is a xenobiotic nuclear receptor best known for its function in the transcriptional regulation of drug metabolism and disposition. Clinical reports suggested that the antibiotic rifampicin, a potent human PXR activator, is a contraindication in alcoholics, but the mechanism was unclear. In this study, we showed that the hepatic expression of fatty acid binding protein 4 (FABP4) was uniquely elevated in ASH patients and a mouse model of ASH. Pharmacological inhibiting FABP4 attenuated ASH in mice. Furthermore, treatment of mice with the mouse PXR agonist pregnenolon-16α-carbonitrile (PCN) induced the hepatic and circulating levels of FABP4 and exacerbated ASH in a PXR-dependent manner. Our mechanism study established FABP4 as a transcriptional target of PXR. Treatment with andrographolide, a natural compound and dual inhibitor of PXR and FABP4, alleviated mice from ASH. In summary, our results showed that the PXR–FABP4 gene regulatory axis plays an important role in the progression of ASH, which may have accounted for the contraindication of rifampicin in patients of alcoholic liver disease. Pharmacological inhibition of PXR and/or FABP4 may have its promise in the clinical management of ASH.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.